python3+opencv3识别图片中的物体并截取的方法-创新互联
如下所示:
易门ssl适用于网站、小程序/APP、API接口等需要进行数据传输应用场景,ssl证书未来市场广阔!成为成都创新互联公司的ssl证书销售渠道,可以享受市场价格4-6折优惠!如果有意向欢迎电话联系或者加微信:13518219792(备注:SSL证书合作)期待与您的合作!运行环境:python3.6.4 opencv3.4.0 # -*- coding:utf-8 -*- """ Note: 使用Python和OpenCV检测图像中的物体并将物体裁剪下来 """ import cv2 import numpy as np # step1:加载图片,转成灰度图 image = cv2.imread("353.jpg") gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # step2:用Sobel算子计算x,y方向上的梯度,之后在x方向上减去y方向上的梯度,通过这个减法,我们留下具有高水平梯度和低垂直梯度的图像区域。 gradX = cv2.Sobel(gray, cv2.CV_32F, dx=1, dy=0, ksize=-1) gradY = cv2.Sobel(gray, cv2.CV_32F, dx=0, dy=1, ksize=-1) # subtract the y-gradient from the x-gradient gradient = cv2.subtract(gradX, gradY) gradient = cv2.convertScaleAbs(gradient) # show image cv2.imshow("first", gradient) cv2.waitKey() # step3:去除图像上的噪声。首先使用低通滤泼器平滑图像(9 x 9内核),这将有助于平滑图像中的高频噪声。 # 低通滤波器的目标是降低图像的变化率。如将每个像素替换为该像素周围像素的均值。这样就可以平滑并替代那些强度变化明显的区域。 # 然后,对模糊图像二值化。梯度图像中不大于90的任何像素都设置为0(黑色)。 否则,像素设置为255(白色)。 # blur and threshold the image blurred = cv2.blur(gradient, (9, 9)) _, thresh = cv2.threshold(blurred, 90, 255, cv2.THRESH_BINARY) # SHOW IMAGE cv2.imshow("thresh", thresh) cv2.waitKey() # step4:在上图中我们看到蜜蜂身体区域有很多黑色的空余,我们要用白色填充这些空余,使得后面的程序更容易识别昆虫区域, # 这需要做一些形态学方面的操作。 kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (25, 25)) closed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel) # show image cv2.imshow("closed1", closed) cv2.waitKey() # step5:从上图我们发现图像上还有一些小的白色斑点,这会干扰之后的昆虫轮廓的检测,要把它们去掉。分别执行4次形态学腐蚀与膨胀。 # perform a series of erosions and dilations closed = cv2.erode(closed, None, iterations=4) closed = cv2.dilate(closed, None, iterations=4) # show image cv2.imshow("closed2", closed) cv2.waitKey() # step6:找出昆虫区域的轮廓。 # cv2.findContours()函数 # 第一个参数是要检索的图片,必须是为二值图,即黑白的(不是灰度图), # 所以读取的图像要先转成灰度的,再转成二值图,我们在第三步用cv2.threshold()函数已经得到了二值图。 # 第二个参数表示轮廓的检索模式,有四种: # 1. cv2.RETR_EXTERNAL表示只检测外轮廓 # 2. cv2.RETR_LIST检测的轮廓不建立等级关系 # 3. cv2.RETR_CCOMP建立两个等级的轮廓,上面的一层为外边界,里面的一层为内孔的边界信息。如果内孔内还有一个连通物体,这个物体的边界也在顶层。 # 4. cv2.RETR_TREE建立一个等级树结构的轮廓。 # 第三个参数为轮廓的近似方法 # cv2.CHAIN_APPROX_NONE存储所有的轮廓点,相邻的两个点的像素位置差不超过1,即max(abs(x1-x2),abs(y2-y1))==1 # cv2.CHAIN_APPROX_SIMPLE压缩水平方向,垂直方向,对角线方向的元素,只保留该方向的终点坐标,例如一个矩形轮廓只需4个点来保存轮廓信息 # cv2.findContours()函数返回两个值,一个是轮廓本身,还有一个是每条轮廓对应的属性。 # cv2.findContours()函数返回第一个值是list,list中每个元素都是图像中的一个轮廓,用numpy中的ndarray表示。 # 每一个ndarray里保存的是轮廓上的各个点的坐标。我们把list排序,点最多的那个轮廓就是我们要找的昆虫的轮廓。 x = cv2.findContours(closed.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # import pdb # pdb.set_trace() _a, cnts, _b = x c = sorted(cnts, key=cv2.contourArea, reverse=True)[0] # OpenCV中通过cv2.drawContours在图像上绘制轮廓。 # 第一个参数是指明在哪幅图像上绘制轮廓 # 第二个参数是轮廓本身,在Python中是一个list # 第三个参数指定绘制轮廓list中的哪条轮廓,如果是-1,则绘制其中的所有轮廓 # 第四个参数是轮廓线条的颜色 # 第五个参数是轮廓线条的粗细 # cv2.minAreaRect()函数: # 主要求得包含点集最小面积的矩形,这个矩形是可以有偏转角度的,可以与图像的边界不平行。 # compute the rotated bounding box of the largest contour rect = cv2.minAreaRect(c) # rect = cv2.minAreaRect(cnts[1]) box = np.int0(cv2.boxPoints(rect)) # draw a bounding box arounded the detected barcode and display the image cv2.drawContours(image, [box], -1, (0, 255, 0), 3) cv2.imshow("Image", image) cv2.imwrite("contoursImage2.jpg", image) cv2.waitKey(0) # step7:裁剪。box里保存的是绿色矩形区域四个顶点的坐标。我将按下图红色矩形所示裁剪昆虫图像。 # 找出四个顶点的x,y坐标的大最小值。新图像的高=maxY-minY,宽=maxX-minX。 Xs = [i[0] for i in box] Ys = [i[1] for i in box] x1 = min(Xs) x2 = max(Xs) y1 = min(Ys) y2 = max(Ys) hight = y2 - y1 width = x2 - x1 cropImg = image[y1:y1+hight, x1:x1+width] # show image cv2.imshow("cropImg", cropImg) cv2.imwrite("bee.jpg", cropImg) cv2.waitKey()
另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。
本文名称:python3+opencv3识别图片中的物体并截取的方法-创新互联
当前链接:http://scyanting.com/article/ccjhic.html