如何解决基于python等频分箱qcut的问题-创新互联
小编给大家分享一下如何解决基于python等频分箱qcut的问题,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!
成都创新互联公司是专业的沾化网站建设公司,沾化接单;提供成都网站建设、网站制作,网页设计,网站设计,建网站,PHP网站建设等专业做网站服务;采用PHP框架,可快速的进行沾化网站开发网页制作和功能扩展;专业做搜索引擎喜爱的网站,专业的做网站团队,希望更多企业前来合作!在python 较新的版本中,pandas.qcut()这个函数中是有duplicates这个参数的,它能解决在等频分箱中遇到的重复值过多引起报错的问题;
在比较旧版本的python中,提供一下解决办法:
import pandas as pd def pct_rank_qcut(series, n): ''' series:要分箱的列 n:箱子数 ''' edages = pd.series([i/n for i in range(n)] # 转换成百分比 func = lambda x: (edages >= x).argmax() #函数:(edages >= x)返回fasle/true列表中第一次出现true的索引值 return series.rank(pct=1).astype(float).apply(func) #series.rank(pct=1)每个值对应的百分位数,最终返回对应的组数;rank()函数传入的数据类型若为object,结果会有问题,因此进行了astype
补充拓展:Python数据离散化:等宽及等频
在处理数据时,我们往往需要将连续性变量进行离散化,最常用的方式便是等宽离散化,等频离散化,在此处我们讨论离散化的概念,只给出在python中的实现以供参考
1. 等宽离散化
使用pandas中的cut()函数进行划分
import numpy as np import pandas as pd # Discretization: Equal Width # # Datas: Sample * Feature def Discretization_EqualWidth(K, Datas, FeatureNumber): DisDatas = np.zeros_like(Datas) for i in range(FeatureNumber): DisOneFeature = pd.cut(Datas[:, i], K, labels=range(1, K+1)) DisDatas[:, i] = DisOneFeature return DisDatas
2. 等频离散化
pandas中有qcut()可以使用,但是边界易出现重复值,如果为了删除重复值设置 duplicates=‘drop',则易出现于分片个数少于指定个数的问题,因此在此处不使用qcut()
import numpy as np import pandas as pd # Discretization: Equal Frequency # # vector: single feature def Rank_qcut(vector, K): quantile = np.array([float(i) / K for i in range(K + 1)]) # Quantile: K+1 values funBounder = lambda x: (quantile >= x).argmax() return vector.rank(pct=True).apply(funBounder) # Discretization: Equal Frequency # # Datas: Sample * Feature def Discretization_EqualFrequency(K, Datas, FeatureNumber): DisDatas = np.zeros_like(Datas) w = [float(i) / K for i in range(K + 1)] for i in range(FeatureNumber): DisOneFeature = Rank_qcut(pd.Series(Datas[:, i]), K) #print(DisOneFeature) DisDatas[:, i] = DisOneFeature return DisDatas
看完了这篇文章,相信你对“如何解决基于python等频分箱qcut的问题”有了一定的了解,如果想了解更多相关知识,欢迎关注创新互联行业资讯频道,感谢各位的阅读!
网站题目:如何解决基于python等频分箱qcut的问题-创新互联
文章转载:http://scyanting.com/article/cdhpep.html