spark2.x由浅入深深到底系列六之RDDjavaapi详解三-创新互联
学习任何spark知识点之前请先正确理解spark,可以参考:正确理解spark
让客户满意是我们工作的目标,不断超越客户的期望值来自于我们对这个行业的热爱。我们立志把好的技术通过有效、简单的方式提供给客户,将通过不懈努力成为客户在信息化领域值得信任、有价值的长期合作伙伴,公司提供的服务项目有:主机域名、雅安服务器托管、营销软件、网站建设、志丹网站维护、网站推广。本文详细介绍了spark key-value类型的rdd java api
一、key-value类型的RDD的创建方式
1、sparkContext.parallelizePairs
JavaPairRDDjavaPairRDD = sc.parallelizePairs(Arrays.asList(new Tuple2("test", 3), new Tuple2("kkk", 3))); //结果:[(test,3), (kkk,3)] System.out.println("javaPairRDD = " + javaPairRDD.collect());
2、keyBy的方式
public class User implements Serializable { private String userId; private Integer amount; public User(String userId, Integer amount) { this.userId = userId; this.amount = amount; } @Override public String toString() { return "User{" + "userId='" + userId + '\'' + ", amount=" + amount + '}'; } } JavaRDDuserJavaRDD = sc.parallelize(Arrays.asList(new User("u1", 20))); JavaPairRDD userJavaPairRDD = userJavaRDD.keyBy(new Function () { @Override public String call(User user) throws Exception { return user.getUserId(); } }); //结果:[(u1,User{userId='u1', amount=20})] System.out.println("userJavaPairRDD = " + userJavaPairRDD.collect());
3、zip的方式
JavaRDDrdd = sc.parallelize(Arrays.asList(1, 1, 2, 3, 5, 8, 13)); //两个rdd zip也是创建key-value类型RDD的一种方式 JavaPairRDD zipPairRDD = rdd.zip(rdd); //结果:[(1,1), (1,1), (2,2), (3,3), (5,5), (8,8), (13,13)] System.out.println("zipPairRDD = " + zipPairRDD.collect());
4、groupBy的方式
JavaRDDrdd = sc.parallelize(Arrays.asList(1, 1, 2, 3, 5, 8, 13)); Function isEven = new Function () { @Override public Boolean call(Integer x) throws Exception { return x % 2 == 0; } }; //将偶数和奇数分组,生成key-value类型的RDD JavaPairRDD > oddsAndEvens = rdd.groupBy(isEven); //结果:[(false,[1, 1, 3, 5, 13]), (true,[2, 8])] System.out.println("oddsAndEvens = " + oddsAndEvens.collect()); //结果:1 System.out.println("oddsAndEvens.partitions.size = " + oddsAndEvens.partitions().size()); oddsAndEvens = rdd.groupBy(isEven, 2); //结果:[(false,[1, 1, 3, 5, 13]), (true,[2, 8])] System.out.println("oddsAndEvens = " + oddsAndEvens.collect()); //结果:2 System.out.println("oddsAndEvens.partitions.size = " + oddsAndEvens.partitions().size());
二、combineByKey
JavaPairRDDjavaPairRDD = sc.parallelizePairs(Arrays.asList(new Tuple2("coffee", 1), new Tuple2("coffee", 2), new Tuple2("panda", 3), new Tuple2("coffee", 9)), 2); //当在一个分区中遇到新的key的时候,对这个key对应的value应用这个函数 Function > createCombiner = new Function >() { @Override public Tuple2 call(Integer value) throws Exception { return new Tuple2<>(value, 1); } }; //当在一个分区中遇到已经应用过上面createCombiner函数的key的时候,对这个key对应的value应用这个函数 Function2 , Integer, Tuple2 > mergeValue = new Function2 , Integer, Tuple2 >() { @Override public Tuple2 call(Tuple2 acc, Integer value) throws Exception { return new Tuple2<>(acc._1() + value, acc._2() + 1); } }; //当需要对不同分区的数据进行聚合的时候应用这个函数 Function2 , Tuple2 , Tuple2 > mergeCombiners = new Function2 , Tuple2 , Tuple2 >() { @Override public Tuple2 call(Tuple2 acc1, Tuple2 acc2) throws Exception { return new Tuple2<>(acc1._1() + acc2._1(), acc1._2() + acc2._2()); } }; JavaPairRDD > combineByKeyRDD = javaPairRDD.combineByKey(createCombiner, mergeValue, mergeCombiners); //结果:[(coffee,(12,3)), (panda,(3,1))] System.out.println("combineByKeyRDD = " + combineByKeyRDD.collect());
combineByKey的数据流如下:
对于combineByKey的原理讲解详细见: spark core RDD api原理详解
三、aggregateByKey
JavaPairRDD> aggregateByKeyRDD = javaPairRDD.aggregateByKey(new Tuple2<>(0, 0), mergeValue, mergeCombiners); //结果:[(coffee,(12,3)), (panda,(3,1))] System.out.println("aggregateByKeyRDD = " + aggregateByKeyRDD.collect()); //aggregateByKey是由combineByKey实现的,上面的aggregateByKey就是等于下面的combineByKeyRDD Function > createCombinerAggregateByKey = new Function >() { @Override public Tuple2 call(Integer value) throws Exception { return mergeValue.call(new Tuple2<>(0, 0), value); } }; //结果是: [(coffee,(12,3)), (panda,(3,1))] System.out.println(javaPairRDD.combineByKey(createCombinerAggregateByKey, mergeValue, mergeCombiners).collect());
四、reduceByKey
JavaPairRDDreduceByKeyRDD = javaPairRDD.reduceByKey(new Function2 () { @Override public Integer call(Integer value1, Integer value2) throws Exception { return value1 + value2; } }); //结果:[(coffee,12), (panda,3)] System.out.println("reduceByKeyRDD = " + reduceByKeyRDD.collect()); //reduceByKey底层也是combineByKey实现的,上面的reduceByKey等于下面的combineByKey Function createCombinerReduce = new Function () { @Override public Integer call(Integer integer) throws Exception { return integer; } }; Function2 mergeValueReduce = new Function2 () { @Override public Integer call(Integer integer, Integer integer2) throws Exception { return integer + integer2; } }; //结果:[(coffee,12), (panda,3)] System.out.println(javaPairRDD.combineByKey(createCombinerReduce, mergeValueReduce, mergeValueReduce).collect());
五、foldByKey
JavaPairRDDfoldByKeyRDD = javaPairRDD.foldByKey(0, new Function2 () { @Override public Integer call(Integer integer, Integer integer2) throws Exception { return integer + integer2; } }); //结果:[(coffee,12), (panda,3)] System.out.println("foldByKeyRDD = " + foldByKeyRDD.collect()); //foldByKey底层也是combineByKey实现的,上面的foldByKey等于下面的combineByKey Function2 mergeValueFold = new Function2 () { @Override public Integer call(Integer integer, Integer integer2) throws Exception { return integer + integer2; } }; Function createCombinerFold = new Function () { @Override public Integer call(Integer integer) throws Exception { return mergeValueFold.call(0, integer); } }; //结果:[(coffee,12), (panda,3)] System.out.println(javaPairRDD.combineByKey(createCombinerFold, mergeValueFold, mergeValueFold).collect());
六、groupByKey
JavaPairRDD> groupByKeyRDD = javaPairRDD.groupByKey(); //结果:[(coffee,[1, 2, 9]), (panda,[3])] System.out.println("groupByKeyRDD = " + groupByKeyRDD.collect()); //groupByKey底层也是combineByKey实现的,上面的groupByKey等于下面的combineByKey Function > createCombinerGroup = new Function >() { @Override public List call(Integer integer) throws Exception { List list = new ArrayList<>(); list.add(integer); return list; } }; Function2 , Integer, List
> mergeValueGroup = new Function2 , Integer, List
>() { @Override public List call(List integers, Integer integer) throws Exception { integers.add(integer); return integers; } }; Function2 , List
, List > mergeCombinersGroup = new Function2 , List
, List >() { @Override public List call(List integers, List integers2) throws Exception { integers.addAll(integers2); return integers; } }; //结果:[(coffee,[1, 2, 9]), (panda,[3])] System.out.println(javaPairRDD.combineByKey(createCombinerGroup, mergeValueGroup, mergeCombinersGroup).collect());
对于api原理性的东西很难用文档说明清楚,如果想更深入,更透彻的理解api的原理,可以参考: spark core RDD api原理详解
另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。
当前题目:spark2.x由浅入深深到底系列六之RDDjavaapi详解三-创新互联
分享链接:http://scyanting.com/article/csshpe.html