Python爬取十篇新闻统计TF-IDF-创新互联

统计十篇新闻TF-IDF

成都创新互联坚持“要么做到,要么别承诺”的工作理念,服务领域包括:成都网站设计、网站建设、企业官网、英文网站、手机端网站、网站推广等服务,满足客户于互联网时代的江源网站设计、移动媒体设计的需求,帮助企业找到有效的互联网解决方案。努力成为您成熟可靠的网络建设合作伙伴!

统计TF-IDF词频,每篇文章的 top10 的高频词存储为 json 文件

TF-IDF

TF-IDF(term frequency–inverse document frequency)是一种用于资讯检索与文本挖掘的常用加权技术。TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度。字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降。TF-IDF加权的各种形式常被搜索引擎应用,作为文件与用户查询之间相关程度的度量或评级。除了TF-IDF以外,互联网上的搜索引擎还会使用基于连结分析的评级方法,以确定文件在搜寻结果中出现的顺序。
假如一篇文件的总词语数是100个,而词语“母牛”出现了3次,那么“母牛”一词在该文件中的词频就是3/100=0.03。一个计算文件频率(DF)的方法是测定有多少份文件出现过“母牛”一词,然后除以文件集里包含的文件总数。所以,如果“母牛”一词在1,000份文件出现过,而文件总数是10,000,000份的话,其逆向文件频率就是log(10,000,000 / 1,000)=4。最后的TF-IDF的分数为0.03 * 4=0.12。 —— [ 维基百科 ]

博主选择的是chinadaily的十篇新闻.

1.使用http request请求
2.使用Beautiful Soup来抓取文章标题和内容
3.统计TF-IDF
4.保存到json文件中

代码块

@requires_authorization
#coding=utf-8

import requests
import bs4
import sys
import math
import json
reload(sys)
sys.setdefaultencoding('utf-8')

url_list = ['http://www.chinadaily.com.cn/china/2016-04/20/content_24701635.htm',
      'http://www.chinadaily.com.cn/china/2016-04/20/content_24700746.htm',
      'http://www.chinadaily.com.cn/china/2016-04/20/content_24681482.htm',
      'http://www.chinadaily.com.cn/china/2016-04/19/content_24675530.htm',
      'http://www.chinadaily.com.cn/china/2016-04/19/content_24675455.htm',
      'http://www.chinadaily.com.cn/china/2016-04/19/content_24674074.htm',
      'http://www.chinadaily.com.cn/china/2016-04/19/content_24655536.htm',
      'http://www.chinadaily.com.cn/china/2016-04/18/content_24643685.htm',
      'http://www.chinadaily.com.cn/china/2016-04/18/content_24636917.htm',
      'http://www.chinadaily.com.cn/china/2016-04/15/content_24562198.htm'
      ]

articles_title = []
articles_content = []

for pos,url in enumerate(url_list):
  r = requests.get(url)
  soup1 = bs4.BeautifulSoup(r.text)
  soup2 = bs4.BeautifulSoup(str(soup1.find_all(id="Title_e")))
  articles_title.append(soup2.h2.string)
  mystr = ""
  soup3 = bs4.BeautifulSoup(str(soup1.find_all(id="Content")))
  for x in soup3.find_all("p"):
    mystr = mystr + x.string

  str_p = ""
  contents = []
  for pos,x in enumerate(mystr):
    if x == '.' or x == ',':
      if pos < (len(mystr) - 1) and mystr[pos+1] >= '0' and mystr[pos+1] <= '9':
        str_p = str_p + x
      elif str_p == "":
        continue
      else:
        contents.append(str_p)
        str_p = ""
    elif x == '(' or x == ')' or x == ' ' or x == '"' or x == '[' or x == ']' or x == '-':
      if str_p == "":
        continue
      else:
        contents.append(str_p)
        str_p = ""
    else:
      str_p = str_p + x

  articles_content.append(contents)

Dict_idf = {}
DictList = []

for content in articles_content:
  Dict_tf = {}
  for x in content:
    if not Dict_tf.has_key(x):
      Dict_tf[x] = 1.0
      if not Dict_idf.has_key(x):
        Dict_idf[x] = 1.0
      else:
        Dict_idf[x] += 1.0
    else:
      Dict_tf[x] += 1.0

  for k, v in Dict_tf.items():
    Dict_tf[k] = v / len(content)

  DictList.append(Dict_tf)

for k, v in Dict_idf.items():
  Dict_idf[k] = math.log(float(len(url_list)) / v)

for pos,x in enumerate(DictList):
  for k,v in x.items():
    DictList[pos][k] = v*Dict_idf[k]
  DictList[pos] = sorted(x.iteritems(), key=lambda d: d[1], reverse=True)

"""
[
  [
    article_titile:"XXXX"
    [
      {
        word:"hello"
        value:3.5
      }
      {
        word:"hello"
        value:3.5
      }
      {
        word:"hello"
        value:3.5
      }
      ...
    ]
  ]
]
"""

data = []
for pos in range(10):
  data2=[]
  data2.append("article_titile:")
  data2.append(articles_title[pos])
  data2.append([{"word": k,"value":round(v,4)} for k,v in DictList[pos][:10]])
  data.append(data2)

# Writing JSON data
with open('data.json', 'w') as f:
  json.dump(data, f)

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


网页名称:Python爬取十篇新闻统计TF-IDF-创新互联
分享URL:http://scyanting.com/article/ddpphp.html