tensorflow如何继续训练之前保存的模型实例-创新互联
一:需重定义神经网络继续训练的方法
成都创新互联公司从2013年成立,我们提供高端网站建设、微信小程序开发、电商视觉设计、成都app软件开发公司及网络营销搜索优化服务,在传统互联网与移动互联网发展的背景下,我们坚守着用标准的设计方案与技术开发实力作基础,以企业及品牌的互联网商业目标为核心,为客户打造具商业价值与用户体验的互联网+产品。1.训练代码
import numpy as np import tensorflow as tf x_data=np.random.rand(100).astype(np.float32) y_data=x_data*0.1+0.3 weight=tf.Variable(tf.random_uniform([1],-1.0,1.0),name="w") biases=tf.Variable(tf.zeros([1]),name="b") y=weight*x_data+biases loss=tf.reduce_mean(tf.square(y-y_data)) #loss optimizer=tf.train.GradientDescentOptimizer(0.5) train=optimizer.minimize(loss) init=tf.global_variables_initializer() sess=tf.Session() sess.run(init) saver=tf.train.Saver(max_to_keep=0) for step in range(10): sess.run(train) saver.save(sess,"./save_mode",global_step=step) #保存 print("当前进行:",step)
分享标题:tensorflow如何继续训练之前保存的模型实例-创新互联
网址分享:http://scyanting.com/article/dgphed.html