JavaScript中的number有什么用-创新互联

这篇文章给大家分享的是有关JavaScript中的number有什么用的内容。小编觉得挺实用的,因此分享给大家做个参考。一起跟随小编过来看看吧。

成都创新互联公司主要从事成都网站设计、网站制作、网页设计、企业做网站、公司建网站等业务。立足成都服务疏勒,十余年网站建设经验,价格优惠、服务专业,欢迎来电咨询建站服务:13518219792

声明:需要读者对二进制有一定的了解

对于 JavaScript 开发者来说,或多或少都遇到过 js 在处理数字上的奇怪现象,比如:

> 0.1 + 0.2
0.30000000000000004
> 0.1 + 1 - 1
0.10000000000000009
> 0.1 * 0.2
0.020000000000000004
> Math.pow(2, 53)
9007199254740992
> Math.pow(2, 53) + 1
9007199254740992
> Math.pow(2, 53) + 3
9007199254740996

如果想要弄明白为什么会出现这些奇怪现象,首先要弄清楚JavaScript 是怎样编码数字的

1. JavaScript 是怎样编码数字的

JavaScript 中的数字,不管是整数、小数、分数,还是正数、负数,全部是浮点数,都是用 8 个字节(64 位)来存储的。

一个数字(如120.12-999)在内存中占用 8 个字节(64 位),存储方式如下:

  1. 0 - 51:分数部分(52 位)

  2. 52 - 62:指数部分(11 位)

  3. 63:符号位(1 位:0 表示这个数是正数,1 表示这个数是负数)

符号位很好理解,用于指明是正数还是负数,且只有 1 位、两种情况(0 表示正数,1 表示负数)。

其他两部分是分数部分和指数部分,用于计算一个数的绝对值。

1.1 绝对值计算公式

1: abs = 1.f * 2 ^ (e - 1023)             0 < e < 2047
2: abs = 0.f * 2 ^ (e - 1022)             e = 0, f > 0
3: abs = 0                                e = 0, f = 0
4: abs = NaN                              e = 2047, f > 0
5: abs = ∞ (infinity, 无穷大)              e = 2047, f = 0

说明:

  • 这个公式是二进制的算法公式,结果用abs表示,分数部分用f表示,指数部分用e表示

  • 2 ^ (e - 1023)表示2e - 1023次方

  • 因为分数部分占 52 位,所以f的取值范围为00...00(中间省略 48 个 0) 到11...11(中间省略 48 个 1)

  • 因为指数部分占 11 位,所以e的取值范围为000000000000) 到204711111111111

从上面的公式可以看出:

  • 1的存储方式:1.00 * 2 ^ (1023 - 1023)f = 0000..., e = 1023...表示 48 个 0)

  • 2的存储方式:1.00 * 2 ^ (1024 - 1023)f = 0000..., e = 1024...表示 48 个 0)

  • 9的存储方式:1.01 * 2 ^ (1025 - 1023)f = 0100..., e = 1025...表示 48 个 0)

  • 0.5的存储方式:1.00 * 2 ^ (1022 - 1023)f = 0000..., e = 1022...表示 48 个 0)

  • 0.625的存储方式:1.01 * 2 ^ (1021 - 1023)f = 0100..., e = 1021...表示 48 个 0)

1.2 绝对值的取值范围与边界

从上面的公式可以看出:

1.2.10 < e < 2047

0 < e < 2047时,取值范围为:f = 0, e = 1f = 11...11, e = 2046(中间省略 48 个 1)

即:Math.pow(2, -1022)~= Math.pow(2, 1024) - 1~=表示约等于)

这当中,~= Math.pow(2, 1024) - 1就是Number.MAX_VALUE的值,js所能表示的大数值。

1.2.2e = 0, f > 0

e = 0, f > 0时,取值范围为:f = 00...01, e = 0(中间省略 48 个 0) 到f = 11...11, e = 0(中间省略 48 个 1)

即:Math.pow(2, -1074)~= Math.pow(2, -1022)~=表示约等于)

这当中,Math.pow(2, -1074)就是Number.MIN_VALUE的值,js所能表示的最小数值(绝对值)。

1.2.3e = 0, f = 0

这只表示一个值0,但加上符号位,所以有+0-0

但在运算中:

> +0 === -0
true
1.2.4e = 2047, f > 0

这只表示一种值NaN

但在运算中:

> NaN == NaN
false

> NaN === NaN
false
1.2.5e = 2047, f = 0

这只表示一个值(infinity, 无穷大)。

在运算中:

> Infinity === Infinity
true

> -Infinity === -Infinity
true
1.3 绝对值的大安全值

从上面可以看出,8 个字节能存储的大数值是Number.MAX_VALUE的值,也就是~= Math.pow(2, 1024) - 1

但这个数值并不安全:从1Number.MAX_VALUE中间的数字并不连续,而是离散的。

比如:Number.MAX_VALUE - 1,Number.MAX_VALUE - 2等数值都无法用公式得出,就存储不了。

所以这里引出了大安全值Number.MAX_SAFE_INTEGER,也就是从1Number.MAX_SAFE_INTEGER中间的数字都是连续的,处在这个范围内的数值计算都是安全的。

f = 11...11, e = 1075(中间省略 48 个 1)时,取得这个值111...11(中间省略 48 个 1),即Math.pow(2, 53) - 1

大于Number.MAX_SAFE_INTEGER:Math.pow(2, 53) - 1的数值都是离散的。

比如:Math.pow(2, 53) + 1,Math.pow(2, 53) + 3不能用公式得出,无法存储在内存中。

所以才会有文章开头的现象:

> Math.pow(2, 53)
9007199254740992

> Math.pow(2, 53) + 1
9007199254740992

> Math.pow(2, 53) + 3
9007199254740996

因为Math.pow(2, 53) + 1不能用公式得出,就无法存储在内存中,所以只有取最靠近这个数的、能够用公式得出的其他数,Math.pow(2, 53),然后存储在内存中,这就是失真,即不安全。

1.4 小数的存储方式与计算

小数中,除了满足m / (2 ^ n)m, n都是整数)的小数可以用完整的 2 进制表示之外,其他的都不能用完整的 2 进制表示,只能无限的逼近一个 2 进制小数。

(注:[2]表示二进制,^表示 N 次方)

0.5 = 1 / 2 = [2]0.1
0.875 = 7 / 8 = 1 / 2 + 1 / 4 + 1 / 8 = [2]0.111
# 0.3 的逼近

0.25 ([2]0.01) < 0.3 < 0.5 ([2]0.10)

0.296875 ([2]0.0100110) < 0.3 < 0.3046875 ([2]0.0100111)
 
0.2998046875 ([2]0.01001100110) < 0.3 < 0.30029296875 ([2]0.01001100111)

... 根据公式计算,直到把分数部分的 52 位填满,然后取最靠近的数

0.3 的存储方式:[2]0.010011001100110011001100110011001100110011001100110011

(f = 0011001100110011001100110011001100110011001100110011, e = 1021)

从上面可以看出,小数中大部分都只是近似值,只有少部分是真实值,所以只有这少部分的值(满足m / (2 ^ n)的小数)可以直接比较大小,其他的都不能直接比较。

> 0.5 + 0.125 === 0.625
true

> 0.1 + 0.2 === 0.3
false

为了安全的比较两个小数,引入Number.EPSILON [Math.pow(2, -52)]来比较浮点数。

> Math.abs(0.1 + 0.2 - 0.3) < Number.EPSILON
true
1.5 小数大保留位数

js从内存中读取一个数时,大保留17位有效数字。

> 0.010011001100110011001100110011001100110011001100110011
0.30000000000000000
0.3
> 0.010011001100110011001100110011001100110011001100110010
0.29999999999999993
> 0.010011001100110011001100110011001100110011001100110100
0.30000000000000004
> 0.0000010100011110101110000101000111101011100001010001111100
0.020000000000000004
2. Number 对象中的常量2.1 Number.EPSILON

表示 1 与 Number 可表示的大于 1 的最小的浮点数之间的差值。

Math.pow(2, -52)

用于浮点数之间安全的比较大小。

2.2 Number.MAX_SAFE_INTEGER

绝对值的大安全值。

Math.pow(2, 53) - 1
2.3 Number.MAX_VALUE

js所能表示的大数值(8 个字节能存储的大数值)。

~= Math.pow(2, 1024) - 1
2.4 Number.MIN_SAFE_INTEGER

最小安全值(包括符号)。

-(Math.pow(2, 53) - 1)
2.5 Number.MIN_VALUE

js所能表示的最小数值(绝对值)。

Math.pow(2, -1074)
2.6 Number.NEGATIVE_INFINITY

负无穷大。

-Infinity
2.7 Number.POSITIVE_INFINITY

正无穷大。

+Infinity
2.8 Number.NaN

非数字。

3. 寻找奇怪现象的原因3.1 为什么0.1 + 0.2结果是0.30000000000000004

0.3的逼近算法类似。

0.1 的存储方式:[2]0.00011001100110011001100110011001100110011001100110011010

(f = 1001100110011001100110011001100110011001100110011010, e = 1019)
0.2 的存储方式:[2]0.0011001100110011001100110011001100110011001100110011010
(f = 1001100110011001100110011001100110011001100110011010, e = 1020)
0.1 + 0.2: 0.0100110011001100110011001100110011001100110011001100111
(f = 00110011001100110011001100110011001100110011001100111, e = 1021)

f = 00110011001100110011001100110011001100110011001100111有 53 位,超过了正常的 52 位,无法存储,所以取最近的数:

0.1 + 0.2: 0.010011001100110011001100110011001100110011001100110100
(f = 0011001100110011001100110011001100110011001100110100, e = 1021)

js读取这个数字为0.30000000000000004

3.2 为什么Math.pow(2, 53) + 1结果是Math.pow(2, 53)

因为Math.pow(2, 53) + 1不能用公式得出,无法存储在内存中,所以只有取最靠近这个数的、能够用公式得出的其他数。

比这个数小的、最靠近的数:

Math.pow(2, 53)
(f = 0000000000000000000000000000000000000000000000000000, e = 1076)

比这个数大的、最靠近的数:

Math.pow(2, 53) + 2
(f = 0000000000000000000000000000000000000000000000000001, e = 1076)

取第一个数:Math.pow(2, 53)

所以:

> Math.pow(2, 53) + 1 === Math.pow(2, 53)
true

感谢各位的阅读!关于JavaScript中的number有什么用就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到吧!


新闻名称:JavaScript中的number有什么用-创新互联
标题链接:http://scyanting.com/article/dhhchd.html