Python如何使用k-means方法将列表中相似的句子归类-创新互联
前言
创新互联专注于牙克石企业网站建设,响应式网站设计,商城网站定制开发。牙克石网站建设公司,为牙克石等地区提供建站服务。全流程按需网站建设,专业设计,全程项目跟踪,创新互联专业和态度为您提供的服务由于今年暑假在学习一些自然语言处理的东西,发现网上对k-means的讲解不是很清楚,网上大多数代码只是将聚类结果以图片的形式呈现,而不是将聚类的结果表示出来,于是我将老师给的代码和网上的代码结合了一下,由于网上有许多关于k-means算法基础知识的讲解,因此我在这里就不多讲解了,想了解详细内容的,大家可以自行百度,在这里我只把我的代码给大家展示一下。
k-means方法的缺点是k值需要自己找,大家可以多换换k值,看看结果会有什么不同
代码
# coding: utf-8 import sys import math import re import docx from sklearn.cluster import AffinityPropagation import nltk from nltk.corpus import wordnet as wn from nltk.collocations import * import numpy as np reload(sys) sys.setdefaultencoding('utf8') from sklearn.feature_extraction.text import CountVectorizer #要聚类的数据 corpus = [ 'This is the first document.',#0 'This is the second second document.',#1 'And the third one.',#2 'Is this the first document?',#3 'I like reading',#4 'do you like reading?',#5 'how funny you are! ',#6 'he is a good guy',#7 'she is a beautiful girl',#8 'who am i',#9 'i like writing',#10 'And the first one',#11 'do you play basketball',#12 ] #将文本中的词语转换为词频矩阵 vectorizer = CountVectorizer() #计算个词语出现的次数 X = vectorizer.fit_transform(corpus)#获取词袋中所有文本关键词 word = vectorizer.get_feature_names() #类调用 transformer = TfidfTransformer() #将词频矩阵X统计成TF-IDF值 tfidf = transformer.fit_transform(X) #查看数据结构 tfidf[i][j]表示i类文本中的tf-idf权重 weight = tfidf.toarray() # print weight # kmeans聚类 from sklearn.cluster import KMeans # print data kmeans = KMeans(n_clusters=5, random_state=0).fit(weight)#k值可以自己设置,不一定是五类 # print kmeans centroid_list = kmeans.cluster_centers_ labels = kmeans.labels_ n_clusters_ = len(centroid_list) # print "cluster centroids:",centroid_list print labels max_centroid = 0 max_cluster_id = 0 cluster_menmbers_list = [] for i in range(0, n_clusters_): menmbers_list = [] for j in range(0, len(labels)): if labels[j] == i: menmbers_list.append(j) cluster_menmbers_list.append(menmbers_list) # print cluster_menmbers_list #聚类结果 for i in range(0,len(cluster_menmbers_list)): print '第' + str(i) + '类' + '---------------------' for j in range(0,len(cluster_menmbers_list[i])): a = cluster_menmbers_list[i][j] print corpus[a]
另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。
分享文章:Python如何使用k-means方法将列表中相似的句子归类-创新互联
转载来于:http://scyanting.com/article/dhicos.html