Pytorch之卷积层的使用详解-创新互联
1.简介(torch.nn下的)
专业从事网站建设、成都网站建设,高端网站制作设计,小程序开发,网站推广的成都做网站的公司。优秀技术团队竭力真诚服务,采用HTML5+CSS3前端渲染技术,成都响应式网站建设公司,让网站在手机、平板、PC、微信下都能呈现。建站过程建立专项小组,与您实时在线互动,随时提供解决方案,畅聊想法和感受。卷积层主要使用的有3类,用于处理不同维度的数据
参数 Parameters:
in_channels(int) – 输入信号的通道
out_channels(int) – 卷积产生的通道
kerner_size(int or tuple) - 卷积核的尺寸
stride(int or tuple, optional) - 卷积步长
padding (int or tuple, optional)- 输入的每一条边补充0的层数
dilation(int or tuple, `optional``) – 卷积核元素之间的间距
groups(int, optional) – 从输入通道到输出通道的阻塞连接数
bias(bool, optional) - 如果bias=True,添加偏置
class torch.nn.Conv1d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)
一维卷积层。用于计算ECG等一维数据。
input: (N,C_in,L_in) N为批次,C_in即为in_channels,即一批内输入一维数据个数,L_in是是一维数据基数
output: (N,C_out,L_out) N为批次,C_in即为out_channels,即一批内输出一维数据个数,L_out是一维数据基数
class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)
二维卷积层。用于计算CT断层或MR断层,或二维超声图像,自然图像等二维数据。
self.conv1 = nn.Conv2d( # 1*28*28 -> 32*28*28 in_channels=1, out_channels=32, kernel_size=5, stride=1, padding=2 #padding是需要计算的,padding=(stride-1)/2 )
另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。
新闻名称:Pytorch之卷积层的使用详解-创新互联
本文链接:http://scyanting.com/article/djjgii.html