python编号迭代函数 python的迭代

python中的迭代是什么意思?

数学上面的定义:迭代公式就是指用现在的值,代到一个公式里面,算出下一个值,再用下一个值代入公式,如此往复地代。比如:x=(x+2/x)/2 你随便拿一个x=10代入,得x=(10+2/10)/2=5.1,再代进去x=(5.1+2/5.1)/2=2.746,再代入得1.737,以此类推。

比如ssl适用于网站、小程序/APP、API接口等需要进行数据传输应用场景,ssl证书未来市场广阔!成为创新互联的ssl证书销售渠道,可以享受市场价格4-6折优惠!如果有意向欢迎电话联系或者加微信:18982081108(备注:SSL证书合作)期待与您的合作!

在python中,迭代式也可以是递归的调用,下面给你举个例子:

def f(n):

if n == 0 or n == 1 or n == 2: return 1

else: return f(n-1) + f(n-2)

这就是一个简单的第n项斐波那契数的求法,这里就用的是迭代式。另外的例子就是牛顿迭代法,采用逐次渐进的效果求出n的开方数,下面是例子:

def f(guess):

return guess ** 2

def fd(guess):

return 2 * guess

def SquareRootNR(x, epsilon):

guess = x / 2.0

diff = f(guess) - x

ctr = 1

while abs(diff) epsilon and ctr = 100:

guess = guess - diff / fd(guess)

diff = f(guess) - x

ctr += 1。

求解答Python中一个简单的迭代

首先这是个递归函数,功能是将一个10进制数,转换成一个其他进制的数,这里转换只是将结果打印出来。

递归这么调用foo(126,2)-foo(63,2),0-foo(31,2),1,0-foo(15,2),1,1,0-foo(7,2),1,1,1,0-foo(3,2),1,1,1,1,0-foo(1,2),1,1,1,1,1,0-1,1,1,1,1,0(共5个1,这个程序写的其实并不对。)有函数表示前面的先算出来,后面才能打印。所以虽然0是最先要打印的,但是却在最后一位,那是因为print放在函数调用的后面。

这个函数的应该在print后面加一句elif num0:print num这句和if缩进相同,这个程序的功能才正常,否则最高位会缺失。

不明白可追问。

Python3 - 排列组合的迭代

遍历一个序列中元素的所有可能的排列或组合。

itertools 模块提供了三个函数来解决这类问题。 其中一个是 itertools.permutations() , 它接受一个序列并产生一个元组序列,每个元组由序列中所有元素的一个可能排列组成,即通过打乱序列中元素排列顺序生成一个元组,比如:

如果想得到指定长度的所有排列,你可以传递一个可选的长度参数。比如:

使用 itertools.combinations() 可得到输入序列中元素的所有的组合。比如:

对于 combinations() 来讲,元素的顺序已经不重要了,即组合 ('a', 'b') 与 ('b', 'a') 其实是一样的,最终只会输出其中一个。

在计算组合的时候,一旦元素被选取就会从候选中剔除掉(比如如果元素’a’已经被选取了,那么接下来就不会再考虑它了)。 而函数 itertools.combinations_with_replacement() 允许同一个元素被选择多次,比如:

尽管手动可以实现排列组合算法,但是这样做比较麻烦,当遇到有些复杂的迭代问题时,可以先去看看itertools模块是否能实现,很有可能会在里面找到解决方案!

Python中的“迭代”详解

迭代器模式:一种惰性获取数据项的方式,即按需一次获取一个数据项。

所有序列都是可以迭代的。我们接下来要实现一个 Sentence(句子)类,我们向这个类的构造方法传入包含一些文本的字符串,然后可以逐个单词迭代。

接下来测试 Sentence 实例能否迭代

序列可以迭代的原因:

iter()

解释器需要迭代对象 x 时,会自动调用iter(x)。

内置的 iter 函数有以下作用:

由于序列都实现了 __getitem__ 方法,所以都可以迭代。

可迭代对象:使用内置函数 iter() 可以获取迭代器的对象。

与迭代器的关系:Python 从可迭代对象中获取迭代器。

下面用for循环迭代一个字符串,这里字符串 'abc' 是可迭代的对象,用 for 循环迭代时是有生成器,只是 Python 隐藏了。

如果没有 for 语句,使用 while 循环模拟,要写成下面这样:

Python 内部会处理 for 循环和其他迭代上下文(如列表推导,元组拆包等等)中的 StopIteration 异常。

标准的迭代器接口有两个方法:

__next__ :返回下一个可用的元素,如果没有元素了,抛出 StopIteration 异常。

__iter__ :返回 self,以便在需要使用可迭代对象的地方使用迭代器,如 for 循环中。

迭代器:实现了无参数的 __next__ 方法,返回序列中的下一个元素;如果没有元素了,那么抛出 StopIteration 异常。Python 中的迭代器还实现了 __iter__ 方法,因此迭代器也可以迭代。

接下来使用迭代器模式实现 Sentence 类:

注意, 不要 在 Sentence 类中实现 __next__ 方法,让 Sentence 实例既是可迭代对象,也是自身的迭代器。

为了“支持多种遍历”,必须能从同一个可迭代的实例中获取多个独立的迭代器,而且各个迭代器要能维护自身的内部状态,因此这一模式正确的实现方式是,每次调用 iter(my_iterable) 都新建一个独立的迭代器。

所以总结下来就是:

实现相同功能,但却符合 Python 习惯的方式是,用生成器函数代替 SentenceIteror 类。

只要 Python 函数的定义体中有 yield 关键字,该函数就是生成器函数。调用生成器函数,就会返回一个生成器对象。

生成器函数会创建一个生成器对象,包装生成器函数的定义体,把生成器传给 next(...) 函数时,生成器函数会向前,执行函数定义体中的下一个 yield 语句,返回产出的值,并在函数定义体的当前位置暂停,。最终,函数的定义体返回时,外层的生成器对象会抛出 StopIteration 异常,这一点与迭代器协议一致。

如今这一版 Sentence 类相较之前简短多了,但是还不够慵懒。 惰性 ,是如今人们认为最好的特质。惰性实现是指尽可能延后生成值,这样做能节省内存,或许还能避免做无用的处理。

目前实现的几版 Sentence 类都不具有惰性,因为 __init__ 方法急迫的构建好了文本中的单词列表,然后将其绑定到 self.words 属性上。这样就得处理整个文本,列表使用的内存量可能与文本本身一样多(或许更多,取决于文本中有多少非单词字符)。

re.finditer 函数是 re.findall 函数的惰性版本,返回的是一个生成器,按需生成 re.MatchObject 实例。我们可以使用这个函数来让 Sentence 类变得懒惰,即只在需要时才生成下一个单词。

标准库提供了很多生成器函数,有用于逐行迭代纯文本文件的对象,还有出色的 os.walk 函数等等。本节专注于通用的函数:参数为任意的可迭代对象,返回值是生成器,用于生成选中的、计算出的和重新排列的元素。

第一组是用于 过滤 的生成器函数:从输入的可迭代对象中产出元素的子集,而且不修改元素本身。这种函数大多数都接受一个断言参数(predicate),这个参数是个 布尔函数 ,有一个参数,会应用到输入中的每个元素上,用于判断元素是否包含在输出中。

以下为这些函数的演示:

第二组是用于映射的生成器函数:在输入的单个/多个可迭代对象中的各个元素上做计算,然后返回结果。

以下为这些函数的用法:

第三组是用于合并的生成器函数,这些函数都可以从输入的多个可迭代对象中产出元素。

以下为演示:

第四组是从一个元素中产出多个值,扩展输入的可迭代对象。

以下为演示:

第五组生成器函数用于产出输入的可迭代对象中的全部元素,不过会以某种方式重新排列。

下面的函数都接受一个可迭代的对象,然后返回单个结果,这种函数叫“归约函数”,“合拢函数”或“累加函数”,其实,这些内置函数都可以用 functools.reduce 函数实现,但内置更加方便,而且还有一些优点。

参考教程:

《流畅的python》 P330 - 363

Python基础之迭代器

一.什么是迭代器

迭代器是用来迭代取值的工具。

而涉及到把多个值循环取出来的类型有:列表,字符串,元组,字段,集合,打开文件等。通过使用的遍历方式有for···in···,while等,但是,这些方式只适用于有索引的数据类型。为了解决索引取的局限性,python提供了一种 不依赖于索引的取值方式:迭代器

注意:

二.可迭代对象

可迭代对象:但凡内置有__iter__方法的都称为可迭代对象

常见的可迭代对象:

1.集合数据类型,如list,tuple,dict,set,str等

2.生成器,包括生成器和带yield的生成器函数。

三.如何创建迭代器

迭代器是一个包含数个值的对象。

迭代器是可以迭代的对象,这意味着您可以遍历所有值。

从技术上讲,在Python中,迭代器是实现迭代器协议的对象,该协议由方法 __iter__() 和 __next__() 组成。

简而言之,一个类里面实现了__iter__()和__next__()这两个魔法方法,那么这个类的对象就是可迭代对象。

四.迭代器的优缺点

1.优点

2.缺点

五.迭代器示例

另外,如果类Stu继承了Iterator,那么Stu可以不用实现__iter__()方法

遍历迭代器

StopIteration

如果你有足够的 next() 语句,或者在 for 循环中使用,则上面的例子将永远进行下去。

为了防止迭代永远进行,我们可以使用 StopIteration 语句。

在 __next__() 方法中,如果迭代完成指定的次数,我们可以添加一个终止条件来引发错误

Python的基础知识之迭代器

迭代:按照一定的顺序访问集合中的每一个元素,或者叫遍历(其他语言叫做遍历);

可迭代对象(Iterable):能被迭代的对象,或者说直接作用于for循环的对象,可以通过for..in来遍历的对象,比如数组(list)、元祖(tuple)字符串等;

迭代器(Iterator):能作用于next() 函数,并不断返回下一个值的对象称为迭代器,是惰性计算的序列(很重要)

1、判断一个对象是可迭代对象呢?方法是通过collections模块的Iterable类型判断

2、判断一个对象是否是迭代器Iterator对象

3、可迭代对象Iterable转化为迭代器对象Iterator

4、使用迭代器迭代

1、迭代器的特性

A.惰性计算数据,节省内存

B.能记录状态,并通过next()函数执行下一个状态

C.具有可迭代性

2、集合数据类型如list、dict、str、tuple等是可迭代对象Iterable但不是迭代器Iterator,不过可以通过iter()函数转化为一个Iterator对象

原因:Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。Iterator对象表示一个无限大的数据,集合是有限集合,假如被next()到最后就是没有返回直接carsh

3、生成器(generator)一定是迭代器,他是一种特殊的迭代器;

如果想了解更多Python知识,请查看

Python的基础知识之生成器

Python的基础知识之装饰器

学无止境,学习Python的伙伴可以多多交流。


网站栏目:python编号迭代函数 python的迭代
分享地址:http://scyanting.com/article/doccgjo.html