opencv3/C++如何实现光流点追踪-创新互联

这篇文章主要介绍了opencv3/C++如何实现光流点追踪,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。

创新互联是一家专业提供靖远企业网站建设,专注与网站建设、成都网站制作H5页面制作、小程序制作等业务。10年已为靖远众多企业、政府机构等服务。创新互联专业网站建设公司优惠进行中。

光流金字塔

calcOpticalFlowPyrLK()函数参数说明:

void calcOpticalFlowPyrLK(
InputArray prevImg, //第一个8位输入图像或者通过 buildOpticalFlowPyramid()建立的金字塔
InputArray nextImg,//第二个输入图像或者和prevImg相同尺寸和类型的金字塔
InputArray prevPts, //二维点向量存储找到的光流;点坐标必须是单精度浮点数
InputOutputArray nextPts,//输出二维点向量(用单精度浮点坐标)包括第二幅图像中计算的输入特征的新点位置;当OPTFLOW_USE_INITIAL_FLOW 标志通过,向量必须有和输入一样的尺寸。
OutputArray status, //输出状态向量(无符号char);如果相应的流特征被发现,向量的每个元素被设置为1,否则,被置为0.
OutputArray err,//输出错误向量;向量的每个元素被设为相应特征的一个错误,误差测量的类型可以在flags参数中设置;如果流不被发现然后错误未被定义(使用status(状态)参数找到此情形)。
Size winSize = Size(21,21), //在每个金字塔水平搜寻窗口的尺寸。
int maxLevel = 3,//大金字塔层数; 如果设置为0,则不使用金字塔(单层),如果设置为1,则使用两个层次,依此类推; 如果将金字塔传递给输入,则算法将使用与金字塔一样多的级别,但不超过maxLevel。
TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01),//指定迭代搜索算法的终止标准(指定的大迭代次数criteria.maxCount或搜索窗口移动小于criteria.epsilon)
int flags = 0, //操作标志
double minEigThreshold = 1e-4 //计算光流方程的2×2标准矩阵的最小特征值除以窗口中的像素数量;如果这个值小于minEigThreshold,那么一个相应的特征被过滤出来,且它的光流不被处理,所以它允许去除坏点提升性能。
);
#include
using namespace cv;

//光流跟踪
Mat frame, gray, pr_frame, pr_gray;
std::vector inPoints;
std::vector fpts[2];
void trackFeature();

int main()
{
  VideoCapture capture;
  capture.open(0);
  if(!capture.isOpened())
  {
    printf("can not open the camear......\n");
    return -1;
  }
  namedWindow("input", CV_WINDOW_AUTOSIZE);
  namedWindow("output", CV_WINDOW_AUTOSIZE);

  while (capture.read(frame))
  {  
    cvtColor(frame, gray, COLOR_BGR2GRAY);
    if (fpts[0].size() < 40)
    {
      imshow("input", frame);
      std::vector features;
      //角点检测
      goodFeaturesToTrack(gray, features, 300, 0.01, 10);
      fpts[0].insert(fpts[0].end(), features.begin(), features.end());
      inPoints.insert(inPoints.end(), features.begin(), features.end());
    }
    else
      printf("object tracking......\n"); 
    if (pr_gray.empty()) 
      gray.copyTo(pr_gray);
    trackFeature();
    for (int i = 0; i < fpts[0].size(); i++) 
      circle(frame, fpts[0][i], 2, Scalar(0,255,0),2,8,0);
    gray.copyTo(pr_gray);
    frame.copyTo(pr_frame);
    imshow("output", frame);
    waitKey(1);
  }
  waitKey(0);
  capture.release();
  return 0;
}


void trackFeature()
{
  std::vector status;
  std::vector errors;
  //计算稀疏特征集的光流
  calcOpticalFlowPyrLK(pr_gray, gray, fpts[0], fpts[1], status, errors);
  int k = 0;
  for (int i = 0; i < fpts[1].size(); i++)
  {
    double dist = abs(fpts[0][i].x-fpts[1][i].x) + abs(fpts[0][i].y-fpts[1][i].y);
    if (dist > 2 && status[i])
    {
      inPoints[k] = inPoints[i];
      fpts[1][k++] = fpts[1][i];
    }
  }
  inPoints.resize(k);
  fpts[1].resize(k);
  //绘制光流轨迹
  RNG rng(0); 
  for (int i = 0; i < fpts[0].size(); i++)
  {
    Scalar color = Scalar(rng.uniform(0,255),rng.uniform(0,255),rng.uniform(0,255));
    line(frame, inPoints[i], fpts[1][i], color,2);
    circle(frame, fpts[1][i], 2, Scalar(0,255,255),2);
  }
  std::swap(fpts[1], fpts[0]);
}

opencv3/C++如何实现光流点追踪

opencv3/C++如何实现光流点追踪

感谢你能够认真阅读完这篇文章,希望小编分享的“opencv3/C++如何实现光流点追踪”这篇文章对大家有帮助,同时也希望大家多多支持创新互联建站,关注创新互联网站建设公司行业资讯频道,更多相关知识等着你来学习!

另外有需要云服务器可以了解下创新互联建站www.cdcxhl.com,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


文章名称:opencv3/C++如何实现光流点追踪-创新互联
本文网址:http://scyanting.com/article/doeiie.html