opencv+python实现均值滤波-创新互联

本文实例为大家分享了opencv+python实现均值滤波的具体代码,供大家参考,具体内容如下

滴道ssl适用于网站、小程序/APP、API接口等需要进行数据传输应用场景,ssl证书未来市场广阔!成为创新互联的ssl证书销售渠道,可以享受市场价格4-6折优惠!如果有意向欢迎电话联系或者加微信:18980820575(备注:SSL证书合作)期待与您的合作!

原理

均值滤波其实就是对目标像素及周边像素取平均值后再填回目标像素来实现滤波目的的方法,当滤波核的大小是3×3 3\times 33×3时,则取其自身和周围8个像素值的均值来代替当前像素值。
均值滤波也可以看成滤波核的值均为 1 的滤波。
优点:算法简单,计算速度快;
缺点:降低噪声的同时使图像产生模糊,特别是景物的边缘和细节部分。

代码

import cv2 as cv
import numpy as np
import math
import copy

def spilt( a ):
 if a/2 == 0:
  x1 = x2 = a/2
 else:
  x1 = math.floor( a/2 )
  x2 = a - x1
 return -x1,x2

def original (i, j, k,a, b,img):
 x1, x2 = spilt(a)
 y1, y2 = spilt(b)
 temp = np.zeros(a * b)
 count = 0
 for m in range(x1, x2):
  for n in range(y1, y2):
   if i + m < 0 or i + m > img.shape[0] - 1 or j + n < 0 or j + n > img.shape[1] - 1:
    temp[count] = img[i, j, k]
   else:
    temp[count] = img[i + m, j + n, k]
   count += 1
 return temp

def average_function(a , b ,img):
 img0 = copy.copy(img)
 for i in range (0 , img.shape[0] ):
  for j in range (2 ,img.shape[1] ):
   for k in range (img.shape[2]):
    temp = original(i, j, k, a, b, img0)
    img[i,j,k] = int ( np.mean(temp))
 return img 
 
def main():
 img0 = cv.imread(r"noise.jpg")

 ave_img = average_function( 3 , 3, copy.copy(img0) ) #(3,3)滤波器大小 

 cv.imshow("ave_img",ave_img) 
 cv.imshow("original",img0)

 cv.waitKey(0)
 cv.destroyAllWindows()

if __name__ == "__main__":
 main()

当前文章:opencv+python实现均值滤波-创新互联
链接URL:http://scyanting.com/article/dohecs.html