数据结构和算法:算法复杂度-创新互联
我们开始了算法复杂度的学习,本期教程我们学习后半段。
创新互联拥有网站维护技术和项目管理团队,建立的售前、实施和售后服务体系,为客户提供定制化的网站制作、网站设计、网站维护、大邑服务器托管解决方案。为客户网站安全和日常运维提供整体管家式外包优质服务。我们的网站维护服务覆盖集团企业、上市公司、外企网站、成都做商城网站、政府网站等各类型客户群体,为全球上1000+企业提供全方位网站维护、服务器维护解决方案。复杂度只考虑操作数目的一个数量级(忽略了其他的组分),这是一种近似。
为了表示这种近似,我们使用一个特定的符号,就是著名的 大 O 符号。
大 O 符号(Big O notation),又称为渐进符号,是用于描述函数渐近行为的数学符号。更确切地说,它是用另一个(通常更简单的)函数来描述一个函数数量级的渐近上界。在数学中,它一般用来刻画被截断的无穷级数尤其是渐近级数的剩余项。在计算机科学中,它在分析算法复杂度的方面非常有用。大 O 符号是由德国数论学家 保罗·巴赫曼(Paul Bachmann)在其 1892 年的著作《解析数论》(Analytische Zahlentheorie)首先引入的。而这个记号则是在另一位德国数论学家 艾德蒙·朗道(Edmund Landau)的著作中才推广的,因此它有时又称为 朗道符号(Landau Notation)。代表“order of …”(…阶)的大 O,最初是一个大写希腊字母“Ο”(Omicron),现今用的是大写拉丁字母“O”。
例如,小鸭子们去度假这个故事里,农夫 Oscar 的第一种算法有 N2 个操作,我们就说此算法的复杂度是 O(N2)。类似地,第二种更快的算法的复杂度是 O(N)。
大 O 符号有点像一个大圆形的袋子,可以把不同的操作数目整合在一起,使之具有一个同样的数量级。
例如,如果有三个算法,它们的操作数目分别为 N,5N + 7 和 N / 4,我们就都用 O(N) (读作 “N 的 大 O”。当然了,读法其实不是那么固定)来表示这三个算法的复杂度。
类似地,如果一个算法的操作数是(2 * N2 + 5 * N + 7),那么它的复杂度是 O(N2):我们忽略了 5 * N 和 7 这两项,因为它们与 2N2 相比数量级较小。随着 N 的增大,这两项的增长速率比 2N2 要慢,因此我们保留 2N2 即可,又因为常数乘法因子(这里是 2)不予考虑,因此记为 O(N2)。
我们说 f(N) 表示“N 的函数”(例如, f(N) = 2 * N2 + 5 * N + 7) ),那么 O(f(N)) 表示的是“大约有 f(N) 个操作的算法的复杂度”,这里的“大约”是非常关键的。
2. 时间复杂度和空间复杂度
下面我们来学习算法中常听到的“时间复杂度”和“空间复杂度”。
为什么我竟然想到了漫威里面的大反派灭霸的无限手套呢?上面有时间宝石和空间宝石这两颗无限宝石。一定是因为我看了《复仇者联盟3:无限战争》和《复仇者联盟4:终局之战》的关系…
本文名称:数据结构和算法:算法复杂度-创新互联
网页路径:http://scyanting.com/article/dpgijs.html