list数据怎么利用pandas拆分成行或列-创新互联
本篇文章为大家展示了list数据怎么利用pandas拆分成行或列,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。
站在用户的角度思考问题,与客户深入沟通,找到望花网站设计与望花网站推广的解决方案,凭借多年的经验,让设计与互联网技术结合,创造个性化、用户体验好的作品,建站类型包括:成都网站设计、做网站、企业官网、英文网站、手机端网站、网站推广、域名注册、虚拟空间、企业邮箱。业务覆盖望花地区。数据
import numpy as np import pandas as pd data = [{'Name': '小明', 'Chinese': [70, 80], 'Math': [90, 80]}, {'Name': '小红', 'Chinese': [70, 80, 90], 'Math': [90, 80, 70]}] data = pd.DataFrame(data) data
拆分成行
def split_row(data, column): '''拆分成行 :param data: 原始数据 :param column: 拆分的列名 :type data: pandas.core.frame.DataFrame :type column: str ''' row_len = list(map(len, data[column].values)) rows = [] for i in data.columns: if i == column: row = np.concatenate(data[i].values) else: row = np.repeat(data[i].values, row_len) rows.append(row) return pd.DataFrame(np.dstack(tuple(rows))[0], columns=data.columns) split_row(data, column='Chinese')
拆分成列
from copy import deepcopy def split_col(data, column): '''拆分成列 :param data: 原始数据 :param column: 拆分的列名 :type data: pandas.core.frame.DataFrame :type column: str ''' data = deepcopy(data) max_len = max(list(map(len, data[column].values))) # 较大长度 new_col = data[column].apply(lambda x: x + [None]*(max_len - len(x))) # 补空值,None可换成np.nan new_col = np.array(new_col.tolist()).T # 转置 for i, j in enumerate(new_col): data[column + str(i)] = j return data split_col(data, column='Chinese')
其他情况
1. 批量处理+不要原列
def split_col(data, columns): '''拆分成列 :param data: 原始数据 :param columns: 拆分的列名 :type data: pandas.core.frame.DataFrame :type columns: list ''' for c in columns: new_col = data.pop(c) max_len = max(list(map(len, new_col.values))) # 较大长度 new_col = new_col.apply(lambda x: x + [None]*(max_len - len(x))) # 补空值,None可换成np.nan new_col = np.array(new_col.tolist()).T # 转置 for i, j in enumerate(new_col): data[c + str(i)] = j split_col(data, columns=['Chinese','Math']) data
2. 带int和list数据
转成这样:
import numpy as np import pandas as pd data = [{'Name': '小爱', 'Chinese': 70, 'Math': 90}, {'Name': '小明', 'Chinese': [70, 80], 'Math': [90, 80]}, {'Name': '小红', 'Chinese': [70, 80, 90], 'Math': [90, 80, 70]}] data = pd.DataFrame(data) def split_col(data, columns): '''拆分成列 :param data: 原始数据 :param columns: 拆分的列名 :type data: pandas.core.frame.DataFrame :type columns: list ''' for c in columns: new_col = data.pop(c) max_len = max(list(map(lambda x:len(x) if isinstance(x, list) else 1, new_col.values))) # 较大长度 new_col = new_col.apply(lambda x: x+[None]*(max_len - len(x)) if isinstance(x, list) else [x]+[None]*(max_len - 1)) # 补空值,None可换成np.nan new_col = np.array(new_col.tolist()).T # 转置 for i, j in enumerate(new_col): data[c + str(i)] = j split_col(data, columns=['Chinese','Math']) data
上述内容就是list数据怎么利用pandas拆分成行或列,你们学到知识或技能了吗?如果还想学到更多技能或者丰富自己的知识储备,欢迎关注创新互联行业资讯频道。
本文标题:list数据怎么利用pandas拆分成行或列-创新互联
URL网址:http://scyanting.com/article/dpppic.html