python函数拟合度,拟合度的公式
Python 怎么用曲线拟合数据
Python中利用guiqwt进行曲线数据拟合。
创新互联坚持“要么做到,要么别承诺”的工作理念,服务领域包括:网站设计、成都网站制作、企业官网、英文网站、手机端网站、网站推广等服务,满足客户于互联网时代的德城网站设计、移动媒体设计的需求,帮助企业找到有效的互联网解决方案。努力成为您成熟可靠的网络建设合作伙伴!
示例程序:
图形界面如下:
Python最小二乘法拟合与作图
在函数拟合中,如果用p表示函数中需要确定的参数,那么目标就是找到一组p,使得下面函数S的值最小:
这种算法称为最小二乘法拟合。Python的Scipy数值计算库中的optimize模块提供了 leastsq() 函数,可以对数据进行最小二乘拟合计算。
此处利用该函数对一段弧线使用圆方程进行了拟合,并通过Matplotlib模块进行了作图,程序内容如下:
Python的使用中需要导入相应的模块,此处首先用 import 语句
分别导入了numpy, leastsq与pylab模块,其中numpy模块常用用与数组类型的建立,读入等过程。leastsq则为最小二乘法拟合函数。pylab是绘图模块。
接下来我们需要读入需要进行拟合的数据,这里使用了 numpy.loadtxt() 函数:
其参数有:
进行拟合时,首先我们需要定义一个目标函数。对于圆的方程,我们需要圆心坐标(a,b)以及半径r三个参数,方便起见用p来存储:
紧接着就可以进行拟合了, leastsq() 函数需要至少提供拟合的函数名与参数的初始值:
返回的结果为一数组,分别为拟合得到的参数与其误差值等,这里只取拟合参数值。
leastsq() 的参数具体有:
输出选项有:
最后我们可以将原数据与拟合结果一同做成线状图,可采用 pylab.plot() 函数:
pylab.plot() 函数需提供两列数组作为输入,其他参数可调控线条颜色,形状,粗细以及对应名称等性质。视需求而定,此处不做详解。
pylab.legend() 函数可以调控图像标签的位置,有无边框等性质。
pylab.annotate() 函数设置注释,需至少提供注释内容与放置位置坐标的参数。
pylab.show() 函数用于显示图像。
最终结果如下图所示:
用Python作科学计算
numpy.loadtxt
scipy.optimize.leastsq
如何用python拟合对数函数
scipy的optimize工具箱中有拟合函数可以使用
或者用sm的OSL进行拟合
具体搜一下教程
python_numpy最小二乘法的曲线拟合
在了解了最小二乘法的基本原理之后 python_numpy实用的最小二乘法理解 ,就可以用最小二乘法做曲线拟合了
从结果中可以看出,直线拟合并不能对拟合数据达到很好的效果,下面我们介绍一下曲线拟合。
b=[y1]
[y2]
......
[y100]
解得拟合函数的系数[a,b,c.....d]
CODE:
根据结果可以看到拟合的效果不错。
我们可以通过改变
来调整拟合效果。
如果此处我们把拟合函数改为最高次为x^20的多项式
所得结果如下:
矫正 过拟合 现象
在保持拟合函数改为最高次为x^20的多项式的条件下,增大样本数:
通过结果可以看出,过拟合现象得到了改善。
Python 中的函数拟合
很多业务场景中,我们希望通过一个特定的函数来拟合业务数据,以此来预测未来数据的变化趋势。(比如用户的留存变化、付费变化等)
本文主要介绍在 Python 中常用的两种曲线拟合方法:多项式拟合 和 自定义函数拟合。
通过多项式拟合,我们只需要指定想要拟合的多项式的最高项次是多少即可。
运行结果:
对于自定义函数拟合,不仅可以用于直线、二次曲线、三次曲线的拟合,它可以适用于任意形式的曲线的拟合,只要定义好合适的曲线方程即可。
运行结果:
当前题目:python函数拟合度,拟合度的公式
本文来源:http://scyanting.com/article/dscehps.html