二维sinc函数c语言,sinC语言
sinc函数的一维sinc函数
它们都是正弦函数和单调递减函数 1/x的乘积:
创新互联建站专注于法库网站建设服务及定制,我们拥有丰富的企业做网站经验。 热诚为您提供法库营销型网站建设,法库网站制作、法库网页设计、法库网站官网定制、小程序设计服务,打造法库网络公司原创品牌,更为您提供法库网站排名全网营销落地服务。
1.在数字信号处理和通信理论中,归一化sinc函数通常定义为;
2.在数学领域,非归一化sinc函数 (for sinus cardinalis)定义为:
在这两种情况下,函数在 0 点的奇异点有时显式地定义为 1,sinc 函数处处可解析。非归一化sinc函数等同于归一化sinc函数,只是它的变量中没有放大系数 π。 二维的sinc()函数是一维sinc函数的扩展,其归一化定义为:
二维的sinc()函数三维透视图如下所示:
考试的时候sinC能不能直接写c
考试的时候sinc不能直接写c的。
因为这二者的意义完全不同,前者是数学里面三角函数这部分的专有名词,后者则是英语中的字母。所以绝对不可以进行相互替换。
sinc函数,又称辛格函数,用sinc(x)表示。sinc函数与sa函数的数学表达形式相同,Sa函数称为采样函数,或抽样函数,用Sa(x)表示,Sa函数词条有两个定义,有时区分为归一化sinc函数和非归一化的sinc函数。
它们都是正弦函数和单调递减函数 1/x的乘积,函数在原点的奇异点有时显式地定义为 1,sinc 函数处处可解析。非归一化sinc函数等同于归一化sinc函数,只是它的变量中没有放大系数 π。
sinc函数
从时域到频域
在对信号进行处理的过程中,我们经常使用傅立叶变换。傅立叶变换将信号从时域转到频域,便于分析和处理。
当采样脉冲的宽度越来越窄,采样后的信号具有的频谱宽度会越来越宽。在理论分析时,我们可以假设脉冲的宽度趋于0,也就是δ函数。这时候信号的频谱在频域上无限重复延展。
我们在还原信号的时候,只需要在频谱上做一个低通滤波,把那些延展出来的频率过滤掉,得到的就是原始的信号啦!
而根据傅立叶变换的性质,在频域上乘积,等价于在时域上的卷积。而低通滤波器,可以近似看为一个矩形函数。矩形函数的傅立叶变换(或者逆变换),则是Sinc函数。
所以,低通滤波的操作,又相当于把采样点和Sinc函数进行了卷积。采样点和采样点之间的曲线,也就自然而然地形成了。
是因为sinc信号在频域上是一个矩形窗。
一个连续时间信号经过理想取样后频谱会产生周期延拓。为了重建信号,就需要用低通滤波器把周期延拓产生的高频部分滤掉,只保留原来的基带频谱。这个低通滤波过程就是在频域上乘一个矩形窗。
频域中相乘对应时域中卷积;频域中的矩形窗对应时域中的sinc信号。
所以在时域上重建信号就是要把采样后的信号与sinc信号进行卷积。这个卷积运算化简一下就是所谓的取样内插,内插函数便是sinc函数。
根据采样信号重建信号需要通过一个低通滤波器
采样信号
截止频率为wc的低通滤波器的时域为
重建过程
sinc函数属于什么函数?有什么性质?
y=sinx是正弦函数,
该函数的性质1是奇函数,2对称轴为x=kπ+π/2,k属于z,
3在区间[2kπ-π/2,2kπ+π/2],k属于z是增函数
在区间[2kπ-+π/2,2kπ+3π/2],k属于z是减函数
如何计算sinc函数
斜度定义说斜度是指直线或平面对另一直线或平面倾斜的程度,一般以直角三角形的两直角边的比值来表示;正切函数是直角三角形中,对边与邻边的比值。也是直角三角形的两直角边的比值,所以常常用直角三角形的正切函数表示斜度。
如果知道一个直角三角形的三边的长度,计算斜边的斜度就是计算两直角边的比值,即直角三角形的正切函数(tanθ=y/x)值。
你学没有学过正弦定理和余弦定理!如果学过就应该知道,这个定理肯定能解决这个问题。
正弦定理:a/sinA=b/sinB=c/sinC=2R(2R就是三角形的外接圆的直径)通过这个定理你想计算哪个角(就是你说的边的斜度),就把这个角对着的边除以斜边的长度,得出个数值,然后查正弦表,就可以找到这个角的角度了。
说的更明白点:把正弦定理的公式变一下就得:sinA=a/2R,a和2R是已知的,也就得到了这个角的正弦值,查正弦表就可以查出这个正弦值对应的角度是多少度!也就得到了结果。
斜度是夹角的正切函数。
既然知道三边的长度,就简单了,没必要再推算角度、三角函数了。
设:两个直角边分别为 a、b
斜边对a边的斜度为 —— b/a斜边对b边的斜度为 —— a/b
网页标题:二维sinc函数c语言,sinC语言
链接URL:http://scyanting.com/article/dscpjii.html