求mse函数python,MSE的公式

python的代码

这是某个模型的训练吧

成都创新互联坚持“要么做到,要么别承诺”的工作理念,服务领域包括:做网站、网站设计、企业官网、英文网站、手机端网站、网站推广等服务,满足客户于互联网时代的迎江网站设计、移动媒体设计的需求,帮助企业找到有效的互联网解决方案。努力成为您成熟可靠的网络建设合作伙伴!

看样子,应该是机器学习或者某个深度学习的训练代码

python多元线性回归怎么计算

1、什么是多元线性回归模型?

当y值的影响因素不唯一时,采用多元线性回归模型。

y =y=β0+β1x1+β2x2+...+βnxn

例如商品的销售额可能不电视广告投入,收音机广告投入,报纸广告投入有关系,可以有 sales =β0+β1*TV+β2* radio+β3*newspaper.

2、使用pandas来读取数据

pandas 是一个用于数据探索、数据分析和数据处理的python库

[python] view plain copy

import pandas as pd

[html] view plain copy

pre name="code" class="python"# read csv file directly from a URL and save the results

data = pd.read_csv('/home/lulei/Advertising.csv')

# display the first 5 rows

data.head()

上面代码的运行结果:

TV  Radio  Newspaper  Sales

0  230.1   37.8       69.2   22.1

1   44.5   39.3       45.1   10.4

2   17.2   45.9       69.3    9.3

3  151.5   41.3       58.5   18.5

4  180.8   10.8       58.4   12.9

上面显示的结果类似一个电子表格,这个结构称为Pandas的数据帧(data frame),类型全称:pandas.core.frame.DataFrame.

pandas的两个主要数据结构:Series和DataFrame:

Series类似于一维数组,它有一组数据以及一组与之相关的数据标签(即索引)组成。

DataFrame是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型。DataFrame既有行索引也有列索引,它可以被看做由Series组成的字典。

[python] view plain copy

# display the last 5 rows

data.tail()

只显示结果的末尾5行

 TV  Radio  Newspaper  Sales

195   38.2    3.7       13.8    7.6

196   94.2    4.9        8.1    9.7

197  177.0    9.3        6.4   12.8

198  283.6   42.0       66.2   25.5

199  232.1    8.6        8.7   13.4

[html] view plain copy

# check the shape of the DataFrame(rows, colums)

data.shape

查看DataFrame的形状,注意第一列的叫索引,和数据库某个表中的第一列类似。

(200,4) 

3、分析数据

特征:

TV:对于一个给定市场中单一产品,用于电视上的广告费用(以千为单位)

Radio:在广播媒体上投资的广告费用

Newspaper:用于报纸媒体的广告费用

响应:

Sales:对应产品的销量

在这个案例中,我们通过不同的广告投入,预测产品销量。因为响应变量是一个连续的值,所以这个问题是一个回归问题。数据集一共有200个观测值,每一组观测对应一个市场的情况。

注意:这里推荐使用的是seaborn包。网上说这个包的数据可视化效果比较好看。其实seaborn也应该属于matplotlib的内部包。只是需要再次的单独安装。

[python] view plain copy

import seaborn as sns

import matplotlib.pyplot as plt

# visualize the relationship between the features and the response using scatterplots

sns.pairplot(data, x_vars=['TV','Radio','Newspaper'], y_vars='Sales', size=7, aspect=0.8)

plt.show()#注意必须加上这一句,否则无法显示。

[html] view plain copy

这里选择TV、Radio、Newspaper 作为特征,Sales作为观测值

[html] view plain copy

返回的结果:

seaborn的pairplot函数绘制X的每一维度和对应Y的散点图。通过设置size和aspect参数来调节显示的大小和比例。可以从图中看出,TV特征和销量是有比较强的线性关系的,而Radio和Sales线性关系弱一些,Newspaper和Sales线性关系更弱。通过加入一个参数kind='reg',seaborn可以添加一条最佳拟合直线和95%的置信带。

[python] view plain copy

sns.pairplot(data, x_vars=['TV','Radio','Newspaper'], y_vars='Sales', size=7, aspect=0.8, kind='reg')

plt.show()

结果显示如下:

4、线性回归模型

优点:快速;没有调节参数;可轻易解释;可理解。

缺点:相比其他复杂一些的模型,其预测准确率不是太高,因为它假设特征和响应之间存在确定的线性关系,这种假设对于非线性的关系,线性回归模型显然不能很好的对这种数据建模。

线性模型表达式: y=β0+β1x1+β2x2+...+βnxn 其中

y是响应

β0是截距

β1是x1的系数,以此类推

在这个案例中: y=β0+β1∗TV+β2∗Radio+...+βn∗Newspaper

(1)、使用pandas来构建X(特征向量)和y(标签列)

scikit-learn要求X是一个特征矩阵,y是一个NumPy向量。

pandas构建在NumPy之上。

因此,X可以是pandas的DataFrame,y可以是pandas的Series,scikit-learn可以理解这种结构。

[python] view plain copy

#create a python list of feature names

feature_cols = ['TV', 'Radio', 'Newspaper']

# use the list to select a subset of the original DataFrame

X = data[feature_cols]

# equivalent command to do this in one line

X = data[['TV', 'Radio', 'Newspaper']]

# print the first 5 rows

print X.head()

# check the type and shape of X

print type(X)

print X.shape

输出结果如下:

TV  Radio  Newspaper

0  230.1   37.8       69.2

1   44.5   39.3       45.1

2   17.2   45.9       69.3

3  151.5   41.3       58.5

4  180.8   10.8       58.4

class 'pandas.core.frame.DataFrame'

(200, 3)

[python] view plain copy

# select a Series from the DataFrame

y = data['Sales']

# equivalent command that works if there are no spaces in the column name

y = data.Sales

# print the first 5 values

print y.head()

输出的结果如下:

0    22.1

1    10.4

2     9.3

3    18.5

4    12.9

Name: Sales

(2)、构建训练集与测试集

[html] view plain copy

pre name="code" class="python"span style="font-size:14px;"##构造训练集和测试集

from sklearn.cross_validation import train_test_split  #这里是引用了交叉验证

X_train,X_test, y_train, y_test = train_test_split(X, y, random_state=1)

#default split is 75% for training and 25% for testing

[html] view plain copy

print X_train.shape

print y_train.shape

print X_test.shape

print y_test.shape

输出结果如下:

(150, 3)

(150,)

(50, 3)

(50,)

注:上面的结果是由train_test_spilit()得到的,但是我不知道为什么我的版本的sklearn包中居然报错:

ImportError                               Traceback (most recent call last)ipython-input-182-3eee51fcba5a in module()      1 ###构造训练集和测试集---- 2 from sklearn.cross_validation import train_test_split      3 #import sklearn.cross_validation      4 X_train,X_test, y_train, y_test = train_test_split(X, y, random_state=1)      5 # default split is 75% for training and 25% for testingImportError: cannot import name train_test_split

处理方法:1、我后来重新安装sklearn包。再一次调用时就没有错误了。

2、自己写函数来认为的随机构造训练集和测试集。(这个代码我会在最后附上。)

(3)sklearn的线性回归

[html] view plain copy

from sklearn.linear_model import LinearRegression

linreg = LinearRegression()

model=linreg.fit(X_train, y_train)

print model

print linreg.intercept_

print linreg.coef_

输出的结果如下:

LinearRegression(copy_X=True, fit_intercept=True, normalize=False)

2.66816623043

[ 0.04641001  0.19272538 -0.00349015]

[html] view plain copy

# pair the feature names with the coefficients

zip(feature_cols, linreg.coef_)

输出如下:

[('TV', 0.046410010869663267),

('Radio', 0.19272538367491721),

('Newspaper', -0.0034901506098328305)]

y=2.668+0.0464∗TV+0.192∗Radio-0.00349∗Newspaper

如何解释各个特征对应的系数的意义?

对于给定了Radio和Newspaper的广告投入,如果在TV广告上每多投入1个单位,对应销量将增加0.0466个单位。就是加入其它两个媒体投入固定,在TV广告上每增加1000美元(因为单位是1000美元),销量将增加46.6(因为单位是1000)。但是大家注意这里的newspaper的系数居然是负数,所以我们可以考虑不使用newspaper这个特征。这是后话,后面会提到的。

(4)、预测

[python] view plain copy

y_pred = linreg.predict(X_test)

print y_pred

[python] view plain copy

print type(y_pred)

输出结果如下:

[ 14.58678373   7.92397999  16.9497993   19.35791038   7.36360284

7.35359269  16.08342325   9.16533046  20.35507374  12.63160058

22.83356472   9.66291461   4.18055603  13.70368584  11.4533557

4.16940565  10.31271413  23.06786868  17.80464565  14.53070132

15.19656684  14.22969609   7.54691167  13.47210324  15.00625898

19.28532444  20.7319878   19.70408833  18.21640853   8.50112687

9.8493781    9.51425763   9.73270043  18.13782015  15.41731544

5.07416787  12.20575251  14.05507493  10.6699926    7.16006245

11.80728836  24.79748121  10.40809168  24.05228404  18.44737314

20.80572631   9.45424805  17.00481708   5.78634105   5.10594849]

type 'numpy.ndarray'

5、回归问题的评价测度

(1) 评价测度

对于分类问题,评价测度是准确率,但这种方法不适用于回归问题。我们使用针对连续数值的评价测度(evaluation metrics)。

这里介绍3种常用的针对线性回归的测度。

1)平均绝对误差(Mean Absolute Error, MAE)

(2)均方误差(Mean Squared Error, MSE)

(3)均方根误差(Root Mean Squared Error, RMSE)

这里我使用RMES。

[python] view plain copy

pre name="code" class="python"#计算Sales预测的RMSE

print type(y_pred),type(y_test)

print len(y_pred),len(y_test)

print y_pred.shape,y_test.shape

from sklearn import metrics

import numpy as np

sum_mean=0

for i in range(len(y_pred)):

sum_mean+=(y_pred[i]-y_test.values[i])**2

sum_erro=np.sqrt(sum_mean/50)

# calculate RMSE by hand

print "RMSE by hand:",sum_erro

最后的结果如下:

type 'numpy.ndarray' class 'pandas.core.series.Series'

50 50

(50,) (50,)

RMSE by hand: 1.42998147691

(2)做ROC曲线

[python] view plain copy

import matplotlib.pyplot as plt

plt.figure()

plt.plot(range(len(y_pred)),y_pred,'b',label="predict")

plt.plot(range(len(y_pred)),y_test,'r',label="test")

plt.legend(loc="upper right") #显示图中的标签

plt.xlabel("the number of sales")

plt.ylabel('value of sales')

plt.show()

显示结果如下:(红色的线是真实的值曲线,蓝色的是预测值曲线)

直到这里整个的一次多元线性回归的预测就结束了。

6、改进特征的选择

在之前展示的数据中,我们看到Newspaper和销量之间的线性关系竟是负关系(不用惊讶,这是随机特征抽样的结果。换一批抽样的数据就可能为正了),现在我们移除这个特征,看看线性回归预测的结果的RMSE如何?

依然使用我上面的代码,但只需修改下面代码中的一句即可:

[python] view plain copy

#create a python list of feature names

feature_cols = ['TV', 'Radio', 'Newspaper']

# use the list to select a subset of the original DataFrame

X = data[feature_cols]

# equivalent command to do this in one line

#X = data[['TV', 'Radio', 'Newspaper']]#只需修改这里即可pre name="code" class="python" style="font-size: 15px; line-height: 35px;"X = data[['TV', 'Radio']]  #去掉newspaper其他的代码不变

# print the first 5 rowsprint X.head()# check the type and shape of Xprint type(X)print X.shape

最后的到的系数与测度如下:

LinearRegression(copy_X=True, fit_intercept=True, normalize=False)

2.81843904823

[ 0.04588771  0.18721008]

RMSE by hand: 1.28208957507

然后再次使用ROC曲线来观测曲线的整体情况。我们在将Newspaper这个特征移除之后,得到RMSE变小了,说明Newspaper特征可能不适合作为预测销量的特征,于是,我们得到了新的模型。我们还可以通过不同的特征组合得到新的模型,看看最终的误差是如何的。

备注:

之前我提到了这种错误:

注:上面的结果是由train_test_spilit()得到的,但是我不知道为什么我的版本的sklearn包中居然报错:

ImportError                               Traceback (most recent call last)ipython-input-182-3eee51fcba5a in module()      1 ###构造训练集和测试集---- 2 from sklearn.cross_validation import train_test_split      3 #import sklearn.cross_validation      4 X_train,X_test, y_train, y_test = train_test_split(X, y, random_state=1)      5 # default split is 75% for training and 25% for testingImportError: cannot import name train_test_split

处理方法:1、我后来重新安装sklearn包。再一次调用时就没有错误了。

2、自己写函数来认为的随机构造训练集和测试集。(这个代码我会在最后附上。)

这里我给出我自己写的函数:

matlab求最小均方根误差MSE,等于0,该怎么求

我的思路是这样:

% 读入图像I。注意I应是double类型,不要用uint8

J = adaptive_median_filtering(I); % 做滤波

mse = mean((I(:)-J(:)).^2); % 求mse

请把adaptive_median_filtering这里单独封装成一个函数,然后按我的代码就可以求mse了。

怎么用MATLAB计算均方误差啊

mse是检验神经网络算法的误差分析。

1、首先按照下方图片中的代码进行编辑均方误差函数mse代码。

2、编辑完上面图片中的代码之后,继续根据下方图片中的代码进行编辑。

3、编辑完成之后,运行改代码就可以得到想要的均方误差了。

MATLAB是MATrix LABoratory(矩阵实验室)的缩写,是由美国MathWorks公司于20世纪80年代初推出的一套以矩阵计算为基础的、适合多学科、多种工作平台的功能强劲的大型软件。

MATLAB将科学计算、数据可视化、系统仿真和交互式程序设计功能集成在非常便于使用的环境中,具有编程效率高、用户使用方便、扩充能力强、移植性好等特点。经过MathWorks公司的不断完善,目前MATLAB已经发展成为国际上最优秀的高性能科学与工程计算软件之一。

MATLAB和MATHEMATICA、MAPLE并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中。

为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。

这是一段计算图像信噪比的python代码,请问第三四行是什么意思

第三行是判断mse是不是小于1e-10(表示1*10^-10),如果是的话,函数直接返回100

一文搞懂梯度下降&反向传播

如果把神经网络模型比作一个黑箱,把模型参数比作黑箱上面一个个小旋钮,那么根据通用近似理论(universal approximation theorem),只要黑箱上的旋钮数量足够多,而且每个旋钮都被调节到合适的位置,那这个模型就可以实现近乎任意功能(可以逼近任意的数学模型)。

显然,这些旋钮(参数)不是由人工调节的,所谓的机器学习,就是通过程序来自动调节这些参数。神经网络不仅参数众多(少则十几万,多则上亿),而且网络是由线性层和非线性层交替叠加而成,上层参数的变化会对下层的输出产生非线性的影响,因此,早期的神经网络流派一度无法往多层方向发展,因为他们找不到能用于任意多层网络的、简洁的自动调节参数的方法。

直到上世纪80年代,祖师爷辛顿发明了反向传播算法,用输出误差的均方差(就是loss值)一层一层递进地反馈到各层神经网络,用梯度下降法来调节每层网络的参数。至此,神经网络才得以开始它的深度之旅。

本文用python自己动手实现梯度下降和反向传播算法。 请点击这里 到Github上查看源码。

梯度下降法是一种将输出误差反馈到神经网络并自动调节参数的方法,它通过计算输出误差的loss值( J )对参数 W 的导数,并沿着导数的反方向来调节 W ,经过多次这样的操作,就能将输出误差减小到最小值,即曲线的最低点。

虽然Tensorflow、Pytorch这些框架都实现了自动求导的功能,但为了彻底理解参数调节的过程,还是有必要自己动手实现梯度下降和反向传播算法。我相信你和我一样,已经忘了之前学的微积分知识,因此,到可汗学院复习下 Calculus

和 Multivariable Calculus 是个不错的方法,或是拜读 这篇关于神经网络矩阵微积分的文章 。

Figure2是求导的基本公式,其中最重要的是 Chain Rule ,它通过引入中间变量,将“ y 对 x 求导”的过程转换为“ y 对中间变量 u 求导,再乘以 u 对 x 求导”,这样就将一个复杂的函数链求导简化为多个简单函数求导。

如果你不想涉及这些求导的细节,可以跳过具体的计算,领会其思想就好。

对于神经网络模型: Linear - ReLu - Linear - MSE(Loss function) 来说,反向传播就是根据链式法则对 求导,用输出误差的均方差(MSE)对模型的输出求导,并将导数传回上一层神经网络,用于它们来对 w 、 b 和 x (上上层的输出)求导,再将 x 的导数传回到它的上一层神经网络,由此将输出误差的均方差通过递进的方式反馈到各神经网络层。

对于 求导的第一步是为这个函数链引入中间变量:

接着第二步是对各中间变量求导,最后才是将这些导数乘起来。

首先,反向传播的起点是对loss function求导,即 。 :

mse_grad()之所以用unsqueeze(-1)给导数增加一个维度,是为了让导数的shape和tensor shape保持一致。

linear层的反向传播是对 求导,它也是一个函数链,也要先对中间变量求导再将所有导数相乘:

这些中间变量的导数分别是:

对向量 求导,指的是对向量所有的标量求偏导( ),即: ,这个横向量也称为y的梯度。

这里 ,是一个向量,因此, 求导,指的是y的所有标量(y_1, y_2, ..., y_n)对向量x求偏导,即:

这个矩阵称为雅克比矩阵,它是个对角矩阵,因为 ,因此 。

同理, 。

因此,所有中间导数相乘的结果:

lin_grad() 中的inp.g、w.g和b.g分别是求 的导数,以inp.g为例,它等于 ,且需要乘以前面各层的导数,即 outp.g @ w.t() ,之所以要用点积运算符(@)而不是标量相乘,是为了让它的导数shape和tensor shape保持一致。同理,w.g和b.g也是根据相同逻辑来计算的。

ReLu层的求导相对来说就简单多了,当输入 = 0时,导数为0,当输入 0时,导数为1。

求导运算终于结束了,接下来就是验证我们的反向传播是否正确。验证方法是将forward_backward()计算的导数和Pytorch自动微分得到的导数相比较,如果它们相近,就认为我们的反向传播算法是正确的。

首先,将计算好的参数导数保存到w1g、b1g、w2g和b2g中,再用Pytorch的自动微分来求w11、b11、w22和b22的导数。

最后,用np.allclose()来比较导数间的差异,如果有任何一个导数不相近,assert就会报错。结果证明,我们自己动手实现的算法是正确的。

反向传播是遵循链式法则的,它将前向传播的输出作为输入,输入作为输出,通过递进的方式将求导这个动作从后向前传递回各层。神经网络参数的求导需要进行矩阵微积分计算,根据这些导数的反方向来调节参数,就可以让模型的输出误差的优化到最小值。

欢迎关注和点赞,你的鼓励将是我创作的动力


新闻名称:求mse函数python,MSE的公式
URL地址:http://scyanting.com/article/dscspid.html