python的cov函数,python cov

python pca怎么得到主成份

一般步骤来实现PCA算法

成都创新互联公司服务项目包括思南网站建设、思南网站制作、思南网页制作以及思南网络营销策划等。多年来,我们专注于互联网行业,利用自身积累的技术优势、行业经验、深度合作伙伴关系等,向广大中小型企业、政府机构等提供互联网行业的解决方案,思南网站推广取得了明显的社会效益与经济效益。目前,我们服务的客户以成都为中心已经辐射到思南省份的部分城市,未来相信会继续扩大服务区域并继续获得客户的支持与信任!

(1)零均值化

假如原始数据集为矩阵dataMat,dataMat中每一行代表一个样本,每一列代表同一个特征。零均值化就是求每一列的平均值,然后该列上的所有数都减去这个均值。也就是说,这里零均值化是对每一个特征而言的,零均值化都,每个特征的均值变成0。实现代码如下:

[python] view plain copy

def zeroMean(dataMat):

meanVal=np.mean(dataMat,axis=0)     #按列求均值,即求各个特征的均值

newData=dataMat-meanVal

return newData,meanVal

函数中用numpy中的mean方法来求均值,axis=0表示按列求均值。

该函数返回两个变量,newData是零均值化后的数据,meanVal是每个特征的均值,是给后面重构数据用的。

(2)求协方差矩阵

[python] view plain copy

newData,meanVal=zeroMean(dataMat)

covMat=np.cov(newData,rowvar=0)

numpy中的cov函数用于求协方差矩阵,参数rowvar很重要!若rowvar=0,说明传入的数据一行代表一个样本,若非0,说明传入的数据一列代表一个样本。因为newData每一行代表一个样本,所以将rowvar设置为0。

covMat即所求的协方差矩阵。

(3)求特征值、特征矩阵

调用numpy中的线性代数模块linalg中的eig函数,可以直接由covMat求得特征值和特征向量:

[python] view plain copy

eigVals,eigVects=np.linalg.eig(np.mat(covMat))

eigVals存放特征值,行向量。

eigVects存放特征向量,每一列带别一个特征向量。

特征值和特征向量是一一对应的

(4)保留主要的成分[即保留值比较大的前n个特征]

第三步得到了特征值向量eigVals,假设里面有m个特征值,我们可以对其排序,排在前面的n个特征值所对应的特征向量就是我们要保留的,它们组成了新的特征空间的一组基n_eigVect。将零均值化后的数据乘以n_eigVect就可以得到降维后的数据。代码如下:

[python] view plain copy

eigValIndice=np.argsort(eigVals)            #对特征值从小到大排序

n_eigValIndice=eigValIndice[-1:-(n+1):-1]   #最大的n个特征值的下标

n_eigVect=eigVects[:,n_eigValIndice]        #最大的n个特征值对应的特征向量

lowDDataMat=newData*n_eigVect               #低维特征空间的数据

reconMat=(lowDDataMat*n_eigVect.T)+meanVal  #重构数据

return lowDDataMat,reconMat

代码中有几点要说明一下,首先argsort对特征值是从小到大排序的,那么最大的n个特征值就排在后面,所以eigValIndice[-1:-(n+1):-1]就取出这个n个特征值对应的下标。【python里面,list[a:b:c]代表从下标a开始到b,步长为c。】

numpy的COV函数,究竟是什么计算

cov函数计算的是协方差。

如果输入参数为两个随机变量,则计算二者之间的协方差。

如果输入参数为随机变量组成的矩阵并指定表示随机变量的维度,返回值是随机变量的协方差矩阵。

python 哪个函数和matlab corrcoef函数功能相同?

cov

这个函数是实现这个功能的

另外,对于任意两个维度之间的相关关系可以用pearsonr来计算

哦,忘了说了,cov是numpy里面的,pearsonr是scipy.stats里面的

Python基础 numpy中的常见函数有哪些

有些Python小白对numpy中的常见函数不太了解,今天小编就整理出来分享给大家。

Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy、matplotlib一起使用。其实,list已经提供了类似于矩阵的表示形式,不过numpy为我们提供了更多的函数。

数组常用函数

1.where()按条件返回数组的索引值

2.take(a,index)从数组a中按照索引index取值

3.linspace(a,b,N)返回一个在(a,b)范围内均匀分布的数组,元素个数为N个

4.a.fill()将数组的所有元素以指定的值填充

5.diff(a)返回数组a相邻元素的差值构成的数组

6.sign(a)返回数组a的每个元素的正负符号

7.piecewise(a,[condlist],[funclist])数组a根据布尔型条件condlist返回对应元素结果

8.a.argmax(),a.argmin()返回a最大、最小元素的索引

改变数组维度

a.ravel(),a.flatten():将数组a展平成一维数组

a.shape=(m,n),a.reshape(m,n):将数组a转换成m*n维数组

a.transpose,a.T转置数组a

数组组合

1.hstack((a,b)),concatenate((a,b),axis=1)将数组a,b沿水平方向组合

2.vstack((a,b)),concatenate((a,b),axis=0)将数组a,b沿竖直方向组合

3.row_stack((a,b))将数组a,b按行方向组合

4.column_stack((a,b))将数组a,b按列方向组合

数组分割

1.split(a,n,axis=0),vsplit(a,n)将数组a沿垂直方向分割成n个数组

2.split(a,n,axis=1),hsplit(a,n)将数组a沿水平方向分割成n个数组

数组修剪和压缩

1.a.clip(m,n)设置数组a的范围为(m,n),数组中大于n的元素设定为n,小于m的元素设定为m

2.a.compress()返回根据给定条件筛选后的数组

数组属性

1.a.dtype数组a的数据类型

2.a.shape数组a的维度

3.a.ndim数组a的维数

4.a.size数组a所含元素的总个数

5.a.itemsize数组a的元素在内存中所占的字节数

6.a.nbytes整个数组a所占的内存空间7.a.astype(int)转换a数组的类型为int型

数组计算

1.average(a,weights=v)对数组a以权重v进行加权平均

2.mean(a),max(a),min(a),middle(a),var(a),std(a)数组a的均值、最大值、最小值、中位数、方差、标准差

3.a.prod()数组a的所有元素的乘积

4.a.cumprod()数组a的元素的累积乘积

5.cov(a,b),corrcoef(a,b)数组a和b的协方差、相关系数

6.a.diagonal()查看矩阵a对角线上的元素7.a.trace()计算矩阵a的迹,即对角线元素之和

以上就是numpy中的常见函数。更多Python学习推荐:PyThon学习网教学中心。

cov(x,y)和cov(y,x)相等吗?

是相等的。

cov函数

cov函数用于求协方差矩阵,计算协方差的数学公式为:cov(x1,x2)=E[(x1-u1)(x2-u2)]。其中,E是数学期望,u1=Ex1,u2=Ex2。cov函数的调用语法如下。

(1)C=cov(x):若x为一向量,返回的则是向量元素的方差,为一标量;若x为一个矩阵,则返回协方差矩阵。

(2)C=cov(x,y):计算列向量x、y的协方差,要求x、y具有相等的元素个数。如果x、y是矩阵,那么MATLAB会将其转换为列向量,相当于cov([A(:),B(:)])。


当前文章:python的cov函数,python cov
本文网址:http://scyanting.com/article/dseihpe.html