nosql关系,什么是NoSQL

什么是nosql非关系型数据库

对此,前Google工程师,Milo(本地商店搜索引擎)创始人Ted Dziuba最近发表标题惊人的博客“I Can't Wait for NoSQL to Die”,对NoSQL的适用范围进行了分析。他认为,

专注于为中小企业提供成都网站设计、成都网站制作服务,电脑端+手机端+微信端的三站合一,更高效的管理,为中小企业富拉尔基免费做网站提供优质的服务。我们立足成都,凝聚了一批互联网行业人才,有力地推动了上1000+企业的稳健成长,帮助中小企业通过网站建设实现规模扩充和转变。

NoSQL也会带来一连串的新问题,并不会成为主流,无法取代关系型数据库。

他的理由是:Cassandra等NoSQL数据库在使用上并不方便,比如,修改column family定义时就需要重启。而且NoSQL更适合Google那样的规模,而一般的互联网公司都不是Google,早早地去考虑Google那样的规模的可扩展性,纯粹是浪费时间,存在巨大的商业风险。

他还透露,即使在Google,AdWords这样的关键产品也是基于MySQL实现的。

他在文中最后表示,NoSQL当然死不了,但是

它最终会被边缘化,就像Rails被NoSQL边缘化一样

Dziuba的文章因为言辞激烈,在社区里引起了强烈反应。

SQL数据库阵营赞同者大有人在。craigslist工程师、著名的MySQL专家Jeremy Zawodny表示,在读此文的时候,不时会心一笑。他说,

NoSQL运动只是软件不断进化进程中的正常现象

。关系型数据库也会继续发展,MySQL社区不断推出的XtraDB或InnoDB插件, PBXT, Drizzle都是证据。各种技术竞争的结果是,我们获得了更多解决问题的选择。

drizzle项目开发者Eric Day也表示,NoSQL有很多值得学习的,但是目前大部分实际项目的最佳选择还是关系型数据库。

NoSQL阵营当然不会坐视不理,Cassandra项目组的Eric Evans表示,Dziuba提到Cassandra修改column family定义的问题其实很容易解决。而且,NoSQL并不是要取代MySQL,事实上Twitter仍然在用MySQL。如果关系型数据库能够承担负荷,那就用好了;如果不行,请考虑NoSQL。

而德国知名博客Code Monkeyism则嘲笑Dziuba看起来并没有用MySQL做过真实项目,因为MySQL如果没有memcache,基本上无法应付网站项目。他认为,NoSQL将使SQL数据库边缘化,而且一个重要理由恰恰是可以节省DBA的开销。

digg的前任首席架构师现在也在创业的Joe Stump说,自己现在的创业项目就是用NoSQL,而且列举了一系列问题挑战SQL阵营。

nosql数据库有哪些

Membase

Membase 是 NoSQL 家族的一个新的重量级的成员。Membase是开源项目,源代码采用了Apache2.0的使用许可。该项目托管在GitHub.Source tarballs上,可以下载beta版本的Linux二进制包。该产品主要是由North Scale的memcached核心团队成员开发完成,其中还包括Zynga和NHN这两个主要贡献者的工程师,这两个组织都是很大的在线游戏和社区网络空间的供应商。

Membase容易安装、操作,可以从单节点方便的扩展到集群,而且为memcached(有线协议的兼容性)实现了即插即用功能,在应用方面为开发者和经营者提供了一个比较低的门槛。做为缓存解决方案,Memcached已经在不同类型的领域(特别是大容量的Web应用)有了广泛的使用,其中 Memcached的部分基础代码被直接应用到了Membase服务器的前端。

通过兼容多种编程语言和框架,Membase具备了很好的复用性。在安装和配置方面,Membase提供了有效的图形化界面和编程接口,包括可配置 的告警信息。

Membase的目标是提供对外的线性扩展能力,包括为了增加集群容量,可以针对统一的节点进行复制。 另外,对存储的数据进行再分配仍然是必要的。

这方面的一个有趣的特性是NoSQL解决方案所承诺的可预测的性能,类准确性的延迟和吞吐量。通过如下方式可以获得上面提到的特性:

◆ 自动将在线数据迁移到低延迟的存储介质的技术(内存,固态硬盘,磁盘)

◆ 可选的写操作一一异步,同步(基于复制,持久化)

◆ 反向通道再平衡[未来考虑支持]

◆ 多线程低锁争用

◆ 尽可能使用异步处理

◆ 自动实现重复数据删除

◆ 动态再平衡现有集群

◆ 通过把数据复制到多个集群单元和支持快速失败转移来提供系统的高可用性。

MongoDB

MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。他支持的数据结构非常松散,是类似json的bjson格式,因此可以存储比较复杂的数据类型。Mongo最大的特点是他支持的查询语言非常强大,其语法有点类似于面向对象的查询语言,几乎可以实现类似关系数据库单表查询的绝大部分功能,而且还支持对数据建立索引。它的特点是高性能、易部署、易使用,存储数据非常方便。

主要功能特性:

◆ 面向集合存储,易存储对象类型的数据

“面向集合”(Collenction-Oriented),意思是数据被分组存储在数据集中,被称为一个集合(Collenction)。每个 集合在数据库中都有一个唯一的标识名,并且可以包含无限数目的文档。集合的概念类似关系型数据库(RDBMS)里的表(table),不同的是它不需要定 义任何模式(schema)。

◆ 模式自由

模式自由(schema-free),意味着对于存储在mongodb数据库中的文件,我们不需要知道它的任何结构定义。如果需要的话,你完全可以把不同结构的文件存储在同一个数据库里。

◆支持动态查询

◆支持完全索引,包含内部对象

◆支持查询

◆支持复制和故障恢复

◆使用高效的二进制数据存储,包括大型对象(如视频等)

◆自动处理碎片,以支持云计算层次的扩展性

◆支持RUBY,PYTHON,JAVA,C++,PHP等多种语言

◆文件存储格式为BSON(一种JSON的扩展)

BSON(Binary Serialized document Format)存储形式是指:存储在集合中的文档,被存储为键-值对的形式。键用于唯一标识一个文档,为字符串类型,而值则可以是各种复杂的文件类型。

◆可通过网络访问

MongoDB服务端可运行在Linux、Windows或OS X平台,支持32位和64位应用,默认端口为27017。推荐运行在64位平台,因为MongoDB在32位模式运行时支持的最大文件尺寸为2GB。

MongoDB把数据存储在文件中(默认路径为:/data/db),为提高效率使用内存映射文件进行管理。

Hypertable

Hypertable是一个开源、高性能、可伸缩的数据库,它采用与Google的Bigtable相似的模型。在过去数年中,Google为在PC集群 上运行的可伸缩计算基础设施设计建造了三个关键部分。第一个关键的基础设施是Google File System(GFS),这是一个高可用的文件系统,提供了一个全局的命名空间。它通过跨机器(和跨机架)的文件数据复制来达到高可用性,并因此免受传统 文件存储系统无法避免的许多失败的影响,比如电源、内存和网络端口等失败。第二个基础设施是名为Map-Reduce的计算框架,它与GFS紧密协作,帮 助处理收集到的海量数据。第三个基础设施是Bigtable,它是传统数据库的替代。Bigtable让你可以通过一些主键来组织海量数据,并实现高效的 查询。Hypertable是Bigtable的一个开源实现,并且根据我们的想法进行了一些改进。

Apache Cassandra

Apache Cassandra是一套开源分布式Key-Value存储系统。它最初由Facebook开发,用于储存特别大的数据。Facebook在使用此系统。

主要特性:

◆ 分布式

◆ 基于column的结构化

◆ 高伸展性

Cassandra的主要特点就是它不是一个数据库,而是由一堆数据库节点共同构成的一个分布式网络服务,对Cassandra 的一个写操作,会被复制到其他节点上去,对Cassandra的读操作,也会被路由到某个节点上面去读取。对于一个Cassandra群集来说,扩展性能 是比较简单的事情,只管在群集里面添加节点就可以了。

Cassandra是一个混合型的非关系的数据库,类似于Google的BigTable。其主要功能比 Dynomite(分布式的Key-Value存 储系统)更丰富,但支持度却不如文档存储MongoDB(介于关系数据库和非关系数据库之间的开源产品,是非关系数据库当中功能最丰富,最像关系数据库 的。Cassandra最初由Facebook开发,后转变成了开源项目。它是一个网络社交云计算方面理想的数据库。以Amazon专有的完全分布式的Dynamo为基础,结合了Google BigTable基于列族(Column Family)的数据模型。P2P去中心化的存储。很多方面都可以称之为Dynamo 2.0。

CouchDB

所用语言: Erlang

特点:DB一致性,易于使用

使用许可: Apache

协议: HTTP/REST

双向数据复制,持续进行或临时处理,处理时带冲突检查,因此,采用的是master-master复制

MVCC – 写操作不阻塞读操作

可保存文件之前的版本

Crash-only(可靠的)设计

需要不时地进行数据压缩

视图:嵌入式 映射/减少

格式化视图:列表显示

支持进行服务器端文档验证

支持认证

根据变化实时更新

支持附件处理

因此, CouchApps(独立的 js应用程序)

需要 jQuery程序库

最佳应用场景:适用于数据变化较少,执行预定义查询,进行数据统计的应用程序。适用于需要提供数据版本支持的应用程序。

例如:CRM、CMS系统。 master-master复制对于多站点部署是非常有用的。

和其他数据库比较,其突出特点是:

◆ 模式灵活 :使用Cassandra,像文档存储,你不必提前解决记录中的字段。你可以在系统运行时随意的添加或移除字段。这是一个惊人的效率提升,特别是在大型部 署上。

◆ 真正的可扩展性 :Cassandra是纯粹意义上的水平扩展。为给集群添加更多容量,可以指向另一台电脑。你不必重启任何进程,改变应用查询,或手动迁移任何数据。

◆ 多数据中心识别 :你可以调整你的节点布局来避免某一个数据中心起火,一个备用的数据中心将至少有每条记录的完全复制。

◆ 范围查询 :如果你不喜欢全部的键值查询,则可以设置键的范围来查询。

◆ 列表数据结构 :在混合模式可以将超级列添加到5维。对于每个用户的索引,这是非常方便的。

◆ 分布式写操作 :有可以在任何地方任何时间集中读或写任何数据。并且不会有任何单点失败。

问度娘,啥都有。

NoSQL数据库探讨之一为什么要用非关系数据库

而传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,暴露了很多难以克服的问题,例如:

1、High performance - 对数据库高并发读写的需求

web2.0网站要根据用户个性化信息来实时生成动态页面和提供动态信息,所以基本上无法使用动态页面静态化技术,因此数据库并发负载非常高,往往要达到每秒上万次读写请求。关系数据库应付上万次SQL查询还勉强顶得住,但是应付上万次SQL写数据请求,硬盘IO就已经无法承受了。其实对于普通的BBS网站,往往也存在对高并发写请求的需求。

2、Huge Storage - 对海量数据的高效率存储和访问的需求

对于大型的SNS网站,每天用户产生海量的用户动态,以国外的Friendfeed为例,一个月就达到了2.5亿条用户动态,对于关系数据库来说,在一张2.5亿条记录的表里面进行SQL查询,效率是极其低下乃至不可忍受的。再例如大型web网站的用户登录系统,例如腾讯,盛大,动辄数以亿计的帐号,关系数据库也很难应付。

3、High Scalability High Availability- 对数据库的高可扩展性和高可用性的需求

在基于web的架构当中,数据库是最难进行横向扩展的,当一个应用系统的用户量和访问量与日俱增的时候,你的数据库却没有办法像web server和app server那样简单的通过添加更多的硬件和服务节点来扩展性能和负载能力。对于很多需要提供24小时不间断服务的网站来说,对数据库系统进行升级和扩展是非常痛苦的事情,往往需要停机维护和数据迁移,为什么数据库不能通过不断的添加服务器节点来实现扩展呢?

在上面提到的“三高”需求面前,关系数据库遇到了难以克服的障碍,而对于web2.0网站来说,关系数据库的很多主要特性却往往无用武之地,例如:

1、数据库事务一致性需求

很多web实时系统并不要求严格的数据库事务,对读一致性的要求很低,有些场合对写一致性要求也不高。因此数据库事务管理成了数据库高负载下一个沉重的负担。

2、数据库的写实时性和读实时性需求

对关系数据库来说,插入一条数据之后立刻查询,是肯定可以读出来这条数据的,但是对于很多web应用来说,并不要求这么高的实时性。

3、对复杂的SQL查询,特别是多表关联查询的需求

任何大数据量的web系统,都非常忌讳多个大表的关联查询,以及复杂的数据分析类型的复杂SQL报表查询,特别是SNS类型的网站,从需求以及产品设计角度,就避免了这种情况的产生。往往更多的只是单表的主键查询,以及单表的简单条件分页查询,SQL的功能被极大的弱化了。

因此,关系数据库在这些越来越多的应用场景下显得不那么合适了,为了解决这类问题的非关系数据库应运而生。

NoSQL 是非关系型数据存储的广义定义。它打破了长久以来关系型数据库与ACID理论大一统的局面。NoSQL 数据存储不需要固定的表结构,通常也不存在连接操作。在大数据存取上具备关系型数据库无法比拟的性能优势。该术语在 2009 年初得到了广泛认同。

当今的应用体系结构需要数据存储在横向伸缩性上能够满足需求。而 NoSQL 存储就是为了实现这个需求。Google 的BigTable与Amazon的Dynamo是非常成功的商业 NoSQL 实现。一些开源的 NoSQL 体系,如Facebook 的Cassandra, Apache 的HBase,也得到了广泛认同。

如何学习及选择大数据非关系型数据库NoSQL

是的,NoSQL(非关系型数据库)简单来说,关系模型指的就是二维表格模型,而一个关系型数据库就是由二维表及其之间的联系组成的一个数据组织。 NoSQL最普遍的解释是“非关系型的”,强调Key-Value Stores和文档数据库的优点,而不是单纯的反对RDBMS。

非关系型数据库特点

1.可以处理超大量的数据。

2.运行在便宜的PC服务器集群上。PC集群扩充起来非常方便并且成本很低,避免了“sharding”操作的复杂性和成本。

3.击碎了性能瓶颈。NoSQL的支持者称,通过NoSQL架构可以省去将Web或Java应用和数据转换成SQL友好格式的时间,执行速度变得更快。

4.没有过多的操作。

5.支持者来源于社区。因为NoSQL项目都是开源的,因此它们缺乏供应商提供的正式支持。这一点它们与大多数开源项目一样,不得不从社区中寻求支持。

常见NoSQL数据库的应用场景是怎么样的

文档数据库

源起:受Lotus Notes启发。

数据模型:包含了key-value的文档集合

例子:CouchDB, MongoDB

优点:数据模型自然,编程友好,快速开发,web友好,CRUD。

图数据库

源起: 欧拉和图理论。

数据模型:节点和关系,也可处理键值对。

例子:AllegroGraph, InfoGrid, Neo4j

优点:解决复杂的图问题。

关系数据库

源起: E. F. Codd 在A Relational Model of Data for Large Shared Data Banks提出的

数据模型:各种关系

例子:VoltDB, Clustrix, MySQL

优点:高性能、可扩展的OLTP,支持SQL,物化视图,支持事务,编程友好。

对象数据库

源起:图数据库研究

数据模型:对象

例子:Objectivity, Gemstone

优点:复杂对象模型,快速键值访问,键功能访问,以及图数据库的优点。

Key-Value数据库

源起:Amazon的论文 Dynamo 和 Distributed HashTables。

数据模型:键值对

例子:Membase, Riak

优点:处理大量数据,快速处理大量读写请求。编程友好。

BigTable类型数据库

源起:Google的论文 BigTable。

数据模型:列簇,每一行在理论上都是不同的

例子:HBase, Hypertable, Cassandra

优点:处理大量数据,应对极高写负载,高可用,支持跨数据中心, MapReduce。

数据结构服务

源起: ?

数据模型:字典操作,lists, sets和字符串值

例子:Redis

优点:不同于以前的任何数据库

网格数据库

源起:数据网格和元组空间研究。

数据模型:基于空间的架构

例子:GigaSpaces, Coherence

优点:适于事务处理的高性能和高扩展性

nosql和传统的数据库有什么区别

NoSQL与关系型数据库设计理念比较

关系型数据库中的表都是存储一些格式化的数据结构,每个元组字段的组成都一样,即使不是每个元组都需要所有的字段,但数据库会为每个元组分配所有的字段,这样的结构可以便于表与表之间进行连接等操作,但从另一个角度来说它也是关系型数据库性能瓶颈的一个因素。而非关系型数据库以键值对存储,它的结构不固定,每一个元组可以有不一样的字段,每个元组可以根据需要增加一些自己的键值对,这样就不会局限于固定的结构,可以减少一些时间和空间的开销。

特点:

它们可以处理超大量的数据。

它们运行在便宜的PC服务器集群上。

它们击碎了性能瓶颈。

没有过多的操作。

Bootstrap支持

缺点:

但是一些人承认,没有正式的官方支持,万一出了差错会是可怕的,至少很多管理人员是这样看。

此外,nosql并未形成一定标准,各种产品层出不穷,内部混乱,各种项目还需时间来检验


当前文章:nosql关系,什么是NoSQL
文章网址:http://scyanting.com/article/dsejiec.html