预测函数Python,预测函数forecast
python gradientboostingregressor可以做预测吗
可以
成都创新互联公司专业为企业提供岳西网站建设、岳西做网站、岳西网站设计、岳西网站制作等企业网站建设、网页设计与制作、岳西企业网站模板建站服务,10多年岳西做网站经验,不只是建网站,更提供有价值的思路和整体网络服务。
最近项目中涉及基于Gradient Boosting Regression 算法拟合时间序列曲线的内容,利用python机器学习包 scikit-learn 中的GradientBoostingRegressor完成
因此就学习了下Gradient Boosting算法,在这里分享下我的理解
Boosting 算法简介
Boosting算法,我理解的就是两个思想:
1)“三个臭皮匠顶个诸葛亮”,一堆弱分类器的组合就可以成为一个强分类器;
2)“知错能改,善莫大焉”,不断地在错误中学习,迭代来降低犯错概率
当然,要理解好Boosting的思想,首先还是从弱学习算法和强学习算法来引入:
1)强学习算法:存在一个多项式时间的学习算法以识别一组概念,且识别的正确率很高;
2)弱学习算法:识别一组概念的正确率仅比随机猜测略好;
Kearns Valiant证明了弱学习算法与强学习算法的等价问题,如果两者等价,只需找到一个比随机猜测略好的学习算法,就可以将其提升为强学习算法。
那么是怎么实现“知错就改”的呢?
Boosting算法,通过一系列的迭代来优化分类结果,每迭代一次引入一个弱分类器,来克服现在已经存在的弱分类器组合的shortcomings
在Adaboost算法中,这个shortcomings的表征就是权值高的样本点
而在Gradient Boosting算法中,这个shortcomings的表征就是梯度
无论是Adaboost还是Gradient Boosting,都是通过这个shortcomings来告诉学习器怎么去提升模型,也就是“Boosting”这个名字的由来吧
Adaboost算法
Adaboost是由Freund 和 Schapire在1997年提出的,在整个训练集上维护一个分布权值向量W,用赋予权重的训练集通过弱分类算法产生分类假设(基学习器)y(x),然后计算错误率,用得到的错误率去更新分布权值向量w,对错误分类的样本分配更大的权值,正确分类的样本赋予更小的权值。每次更新后用相同的弱分类算法产生新的分类假设,这些分类假设的序列构成多分类器。对这些多分类器用加权的方法进行联合,最后得到决策结果。
其结构如下图所示:
前一个学习器改变权重w,然后再经过下一个学习器,最终所有的学习器共同组成最后的学习器。
如果一个样本在前一个学习器中被误分,那么它所对应的权重会被加重,相应地,被正确分类的样本的权重会降低。
这里主要涉及到两个权重的计算问题:
1)样本的权值
1 没有先验知识的情况下,初始的分布应为等概分布,样本数目为n,权值为1/n
2 每一次的迭代更新权值,提高分错样本的权重
2)弱学习器的权值
1 最后的强学习器是通过多个基学习器通过权值组合得到的。
2 通过权值体现不同基学习器的影响,正确率高的基学习器权重高。实际上是分类误差的一个函数
Gradient Boosting
和Adaboost不同,Gradient Boosting 在迭代的时候选择梯度下降的方向来保证最后的结果最好。
损失函数用来描述模型的“靠谱”程度,假设模型没有过拟合,损失函数越大,模型的错误率越高
如果我们的模型能够让损失函数持续的下降,则说明我们的模型在不停的改进,而最好的方式就是让损失函数在其梯度方向上下降。
下面这个流程图是Gradient Boosting的经典图了,数学推导并不复杂,只要理解了Boosting的思想,不难看懂
这里是直接对模型的函数进行更新,利用了参数可加性推广到函数空间。
训练F0-Fm一共m个基学习器,沿着梯度下降的方向不断更新ρm和am
GradientBoostingRegressor实现
python中的scikit-learn包提供了很方便的GradientBoostingRegressor和GBDT的函数接口,可以很方便的调用函数就可以完成模型的训练和预测
GradientBoostingRegressor函数的参数如下:
class sklearn.ensemble.GradientBoostingRegressor(loss='ls', learning_rate=0.1, n_estimators=100, subsample=1.0, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_depth=3, init=None, random_state=None, max_features=None, alpha=0.9, verbose=0, max_leaf_nodes=None, warm_start=False, presort='auto')[source]¶
loss: 选择损失函数,默认值为ls(least squres)
learning_rate: 学习率,模型是0.1
n_estimators: 弱学习器的数目,默认值100
max_depth: 每一个学习器的最大深度,限制回归树的节点数目,默认为3
min_samples_split: 可以划分为内部节点的最小样本数,默认为2
min_samples_leaf: 叶节点所需的最小样本数,默认为1
……
可以参考
官方文档里带了一个很好的例子,以500个弱学习器,最小平方误差的梯度提升模型,做波士顿房价预测,代码和结果如下:
1 import numpy as np 2 import matplotlib.pyplot as plt 3 4 from sklearn import ensemble 5 from sklearn import datasets 6 from sklearn.utils import shuffle 7 from sklearn.metrics import mean_squared_error 8 9 ###############################################################################10 # Load data11 boston = datasets.load_boston()12 X, y = shuffle(boston.data, boston.target, random_state=13)13 X = X.astype(np.float32)14 offset = int(X.shape[0] * 0.9)15 X_train, y_train = X[:offset], y[:offset]16 X_test, y_test = X[offset:], y[offset:]17 18 ###############################################################################19 # Fit regression model20 params = {'n_estimators': 500, 'max_depth': 4, 'min_samples_split': 1,21 'learning_rate': 0.01, 'loss': 'ls'}22 clf = ensemble.GradientBoostingRegressor(**params)23 24 clf.fit(X_train, y_train)25 mse = mean_squared_error(y_test, clf.predict(X_test))26 print("MSE: %.4f" % mse)27 28 ###############################################################################29 # Plot training deviance30 31 # compute test set deviance32 test_score = np.zeros((params['n_estimators'],), dtype=np.float64)33 34 for i, y_pred in enumerate(clf.staged_predict(X_test)):35 test_score[i] = clf.loss_(y_test, y_pred)36 37 plt.figure(figsize=(12, 6))38 plt.subplot(1, 2, 1)39 plt.title('Deviance')40 plt.plot(np.arange(params['n_estimators']) + 1, clf.train_score_, 'b-',41 label='Training Set Deviance')42 plt.plot(np.arange(params['n_estimators']) + 1, test_score, 'r-',43 label='Test Set Deviance')44 plt.legend(loc='upper right')45 plt.xlabel('Boosting Iterations')46 plt.ylabel('Deviance')47 48 ###############################################################################49 # Plot feature importance50 feature_importance = clf.feature_importances_51 # make importances relative to max importance52 feature_importance = 100.0 * (feature_importance / feature_importance.max())53 sorted_idx = np.argsort(feature_importance)54 pos = np.arange(sorted_idx.shape[0]) + .555 plt.subplot(1, 2, 2)56 plt.barh(pos, feature_importance[sorted_idx], align='center')57 plt.yticks(pos, boston.feature_names[sorted_idx])58 plt.xlabel('Relative Importance')59 plt.title('Variable Importance')60 plt.show()
可以发现,如果要用Gradient Boosting 算法的话,在sklearn包里调用还是非常方便的,几行代码即可完成,大部分的工作应该是在特征提取上。
感觉目前做数据挖掘的工作,特征设计是最重要的,据说现在kaggle竞赛基本是GBDT的天下,优劣其实还是特征上,感觉做项目也是,不断的在研究数据中培养对数据的敏感度。
求python statsmodel中ARMA中的predict()函数和forecast()用法
model.predict()(start='2017.09.01',end='2017.12.01')需要设置开始时间与结束时间;model.forcast(step=5)直接设置样本外的几期就可以,eg:得到样本外推5期即2018.01.01-2018.05.31五个月的预测值;
python中predict函数在哪个库
一般来说predict函数都是要import一些机器学习算法库后用于建模后预测用的。比如说sklearn库里面的回归,分类,聚类等等都是有对应predict函数的。
举个最简单的例子:
线性回归的函数可以在C:\Python27\Lib\site-packages\sklearn\linear_model文件夹中找到。脚本名为base.py,predict()在187行就有。
如何利用python机器学习预测分析核心算法
您好
基于以下三个原因,我们选择Python作为实现机器学习算法的编程语言:(1) Python的语法清晰;(2) 易于操作纯文本文件;(3) 使用广泛,存在大量的开发文档。
可执行伪代码
Python具有清晰的语法结构,大家也把它称作可执行伪代码(executable pseudo-code)。默认安装的Python开发环境已经附带了很多高级数据类型,如列表、元组、字典、集合、队列等,无需进一步编程就可以使用这些数据类型的操作。使用这些数据类型使得实现抽象的数学概念非常简单。此外,读者还可以使用自己熟悉的编程风格,如面向对象编程、面向过程编程、或者函数式编程。不熟悉Python的读者可以参阅附录A,该附录详细介绍了Python语言、Python使用的数据类型以及安装指南。
Python语言处理和操作文本文件非常简单,非常易于处理非数值型数据。Python语言提供了丰富的正则表达式函数以及很多访问Web页面的函数库,使得从HTML中提取数据变得非常简单直观。
Python比较流行
Python语言使用广泛,代码范例也很多,便于读者快速学习和掌握。此外,在开发实际应用程序时,也可以利用丰富的模块库缩短开发周期。
在科学和金融领域,Python语言得到了广泛应用。SciPy和NumPy等许多科学函数库都实现了向量和矩阵操作,这些函数库增加了代码的可读性,学过线性代数的人都可以看懂代码的实际功能。另外,科学函数库SciPy和NumPy使用底层语言(C和Fortran)编写,提高了相关应用程序的计算性能。本书将大量使用Python的NumPy。
Python的科学工具可以与绘图工具Matplotlib协同工作。Matplotlib可以绘制2D、3D图形,也可以处理科学研究中经常使用到的图形,所以本书也将大量使用Matplotlib。
Python开发环境还提供了交互式shell环境,允许用户开发程序时查看和检测程序内容。
Python开发环境将来还会集成Pylab模块,它将NumPy、SciPy和Matplotlib合并为一个开发环境。在本书写作时,Pylab还没有并入Python环境,但是不远的将来我们肯定可以在Python开发环境找到它。
网站名称:预测函数Python,预测函数forecast
网页网址:http://scyanting.com/article/dsgjhps.html