nosql劣势,nosql数据库的缺点
非关系型数据库有哪些优缺点?
非关系型数据库严格上不是一种数据库,应该是一种数据结构化存储方法的集合,可以是文档或者键值对等。当初我在黑马程序员培训时候就学过。
10年的青河网站建设经验,针对设计、前端、开发、售后、文案、推广等六对一服务,响应快,48小时及时工作处理。成都全网营销的优势是能够根据用户设备显示端的尺寸不同,自动调整青河建站的显示方式,使网站能够适用不同显示终端,在浏览器中调整网站的宽度,无论在任何一种浏览器上浏览网站,都能展现优雅布局与设计,从而大程度地提升浏览体验。创新互联建站从事“青河网站设计”,“青河网站推广”以来,每个客户项目都认真落实执行。
优点:
1、格式灵活:存储数据的格式可以是key,value形式、文档形式、图片形式等等,文档形式、图片形式等等,使用灵活,应用场景广泛,而关系型数据库则只支持基础类型。
2、速度快:nosql可以使用硬盘或者随机存储器作为载体,而关系型数据库只能使用硬盘;
3、高扩展性;
4、成本低:nosql数据库部署简单,基本都是开源软件。
缺点:
1、不提供sql支持,学习和使用成本较高;
2、无事务处理;
3、数据结构相对复杂,复杂查询方面稍欠。
非关系型数据库的分类和比较:
1、文档型
2、key-value型
3、列式数据库
4、图形数据库
高性能 NoSQL
关系数据库经过几十年的发展,已经非常成熟,但同时也存在不足:
表结构是强约束的,业务变更时扩充很麻烦。
如果对大数据量的表进行统计运算,I/O会很高,因为即使只针对某列进行运算,也需要将整行数据读入内存。
全文搜索只能使用 Like 进行整表扫描,性能非常低。
针对这些不足,产生了不同的 NoSQL 解决方案,在某些场景下比关系数据库更有优势,但同时也牺牲了某些特性,所以不能片面的迷信某种方案,应将其作为 SQL 的有利补充。
NoSQL != No SQL,而是:
NoSQL = Not Only SQL
典型的 NoSQL 方案分为4类:
Redis 是典型,其 value 是具体的数据结构,包括 string, hash, list, set, sorted set, bitmap, hyperloglog,常被称为数据结构服务器。
以 list 为例:
LPOP key 是移除并返回队列左边的第一个元素。
如果用关系数据库就比较麻烦了,需要操作:
Redis 的缺点主要体现在不支持完成的ACID事务,只能保证隔离性和一致性,无法保证原子性和持久性。
最大的特点是 no-schema,无需在使用前定义字段,读取一个不存在的字段也不会导致语法错误。
特点:
以电商为例,不同商品的属性差异很大,如冰箱和电脑,这种差异性在关系数据库中会有很大的麻烦,而使用文档数据库则非常方便。
文档数据库的主要缺点:
关系数据库是按行来存储的,列式数据库是按照列来存储数据。
按行存储的优势:
在某些场景下,这些优势就成为劣势了,例如,计算超重人员的数据,只需要读取体重这一列进行统计即可,但行式存储会将整行数据读取到内存中,很浪费。
而列式存储中,只需要读取体重这列的数据即可,I/O 将大大减少。
除了节省I/O,列式存储还有更高的压缩比,可以节省存储空间。普通行式数据库的压缩比在 3:1 到 5:1 左右,列式数据库在 8:1 到 30:1,因为单个列的数据相似度更高。
列式存储的随机写效率远低于行式存储,因为行式存储时同一行多个列都存储在连续空间中,而列式存储将不同列存储在不连续的空间。
一般将列式存储应用在离线大数据分析统计场景,因为这时主要针对部分列进行操作,而且数据写入后无须更新。
关系数据库通过索引进行快速查询,但在全文搜索的情景下,索引就不够了,因为:
假设有一个交友网站,信息表如下:
需要匹配性别、地点、语言列。
需要匹配性别、地点、爱好列。
实际搜索中,各种排列组合非常多,关系数据库很难支持。
全文搜索引擎是使用 倒排索引 技术,建立单词到文档的索引,例如上面的表信息建立倒排索引:
所以特别适合根据关键词来查询文档内容。
上面介绍了几种典型的NoSQL方案,及各自的适用场景和特点,您可以根据实际需求进行选择。
如何连接访问no sql 数据库
关系数据库模型已经流行了几十年了,但是一种新类型的数据库——被称为NoSQL,正在引起企业的注意。下面是关于它的优势和劣势的一个概述。二十多年以来,对数据库管理来说,关系数据库(RDBMS)模型一直是一个占统治地位的数据库模型。但是,今天,非关系数据库,“云”数据库,或“NoSQL”数据库作为关系数据库以外的一些选择,正在引起大家的广泛关注。在这篇文章里,我们将主要关注那些非关系的NoSQL数据库的十大利弊:包括五大优势和五大挑战。
NoSQL的五大优势
1,灵活的可扩展性
多年以来,数据库管理员们都是通过“纵向扩展”的方式(当数据库的负载增加的时候,购买更大型的服务器来承载增加的负载)来进行扩展的,而不是通过“横向扩展”的方式(当数据库负载增加的时候,在多台主机上分配增加的负载)来进行扩展。但是,随着交易率和可用性需求的增加,数据库也正在迁移到云端或虚拟化环境中,“横向扩展”在commodity hardware方面的经济优势变得更加明显了,对各大企业来说,这种“诱惑”是无法抗拒的。
在commodity clusters上,要对RDBMS做“横向扩展”,并不是很容易,但是各种新类型的NoSQL数据库主要是为了进行透明的扩展,来利用新节点而设计的,而且,它们通常都是为了低成本的commodity hardware而设计的。
2,大数据
在过去的十年里,正如交易率发生了翻天覆地的增长一样,需要存储的数据量也发生了急剧地膨胀。O’Reilly把这种现象称为:“数据的工业革命”。为了满足数据量增长的需要,RDBMS的容量也在日益增加,但是,对一些企业来说,随着交易率的增加,单一数据库需要管理的数据约束的数量也变得越来越让人无法忍受了。现在,大量的“大数据”可以通过NoSQL系统(例如:Hadoop)来处理,它们能够处理的数据量远远超出了最大型的RDBMS所能处理的极限。
3,“永别了”!DBA们!(再见?)
在过去的几年里,虽然一些RDBMS供应商们声称在可管理性方面做出了很多的改进,但是高端的RDBMS系统维护起来仍然十分昂贵,而且还需要训练有素的DBA们的协助。DBA们需要亲自参与高端的RDBMS系统的设计,安装和调优。
NoSQL数据库从一开始就是为了降低管理方面的要求而设计的:从理论上来说,自动修复,数据分配和简单的数据模型的确可以让管理和调优方面的要求降低很多。但是,DBA的死期将至的谣言未免有些过于夸张了。总是需要有人对关键性的数据库的性能和可用性负责的。
NoSQL在少量数据的存储上,与传统关系型数据库相比有什么劣势吗?
个人不认为nosql在少量数据存储上有啥优势。nosql主要解决的是auto sharding的问题,你不需要sharding,搞啥nosql. 作者:方圆 链接:
mysql mongodb区别
前言:
MySQL与MongoDB都是开源的常用数据库,但是MySQL是传统的关系型数据库,MongoDB则是非关系型数据库,也叫文档型数据库,是一种NoSQL的数据库。它们各有各的优点,关键是看用在什么地方。所以我们所熟知的那些SQL语句就不适用于MongoDB了,因为SQL语句是关系型数据库的标准语言。
一、关系型数据库-MySQL
1、在不同的引擎上有不同的存储方式。
2、查询语句是使用传统的sql语句,拥有较为成熟的体系,成熟度很高。
3、开源数据库的份额在不断增加,mysql的份额页在持续增长。
4、缺点就是在海量数据处理的时候效率会显著变慢。
二、非关系型数据库-MongoDB
非关系型数据库(nosql ),属于文档型数据库。先解释一下文档的数据库,即可以存放xml、json、bson类型系那个的数据。这些数据具备自述性,呈现分层的树状数据结构。数据结构由键值(key=value)对组成。
1、存储方式:虚拟内存+持久化。
2、查询语句:是独特的MongoDB的查询方式。
3、适合场景:事件的记录,内容管理或者博客平台等等。
4、架构特点:可以通过副本集,以及分片来实现高可用。
5、数据处理:数据是存储在硬盘上的,只不过需要经常读取的数据会被加载到内存中,将数据存储在物理内存中,从而达到高速读写。
6、成熟度与广泛度:新兴数据库,成熟度较低,Nosql数据库中最为接近关系型数据库,比较完善的DB之一,适用人群不断在增长。
三、MongoDB优势与劣势
优势:
1、在适量级的内存的MongoDB的性能是非常迅速的,它将热数据存储在物理内存中,使得热数据的读写变得十分快。
2、MongoDB的高可用和集群架构拥有十分高的扩展性。
3、在副本集中,当主库遇到问题,无法继续提供服务的时候,副本集将选举一个新的主库继续提供服务。
4、MongoDB的Bson和JSon格式的数据十分适合文档格式的存储与查询。
劣势:
1、 不支持事务操作。MongoDB本身没有自带事务机制,若需要在MongoDB中实现事务机制,需通过一个额外的表,从逻辑上自行实现事务。
2、 应用经验少,由于NoSQL兴起时间短,应用经验相比关系型数据库较少。
3、MongoDB占用空间过大。
网站名称:nosql劣势,nosql数据库的缺点
本文来源:http://scyanting.com/article/dsgogop.html