nosql的举例子,nosql表示什么
NoSQL数据库是否意味着缺乏安全性?
NoSQL薄弱的安全性会给企业带来负面影响 。Imperva公司创始人兼CTO Amichai Shulman如是说。在新的一年中,无疑会有更多企业开始或筹划部署NoSQL。方案落实后就会逐渐发现种种安全问题,因此早做准备才是正确的选择。 作为传统关系型数据库的替代方案,NoSQL在查询中并不使用SQL语言,而且允许用户随时变更数据属性。此类数据库以扩展性良好著称,并能够在需要大量应用程序与数据库本身进行实时交互的交易处理任务中发挥性能优势,Couchbase创始人兼产品部门高级副总裁James Phillips解释称:NoSQL以交易业务为核心。它更注重实时处理能力并且擅长直接对数据进行操作,大幅度促进了交互型软件系统的发展。Phillips指出。其中最大的优势之一是能够随时改变(在属性方面),由于结构性的弱化,修改过程非常便捷。 NoSQL最大优势影响其安全性 NoSQL的关键性特色之一是其动态的数据模型,Shulman解释道。我可以在其运作过程中加入新的属性记录。因此与这种结构相匹配的安全模型必须具备一定的前瞻性规划。也就是说,它必须能够了解数据库引入的新属性将引发哪些改变,以及新加入的属性拥有哪些权限。然而这个层面上的安全概念目前尚不存在,根本没有这样的解决方案。 根据Phillips的说法,某些NoSQL开发商已经开始着手研发安全机制,至少在尝试保护数据的完整性。在关系型数据库领域,如果我们的数据组成不正确,那么它将无法与结构并行运作,换言之数据插入操作整体将宣告失败。目前各种验证规则与完整性检查已经比较完善,而事实证明这些验证机制都能在NoSQL中发挥作用。我们与其他人所推出的解决方案类似,都会在插入一条新记录或是文档型规则时触发,并在执行过程中确保插入数据的正确性。 Shulman预计新用户很快将在配置方面捅出大娄子,这并非因为IT工作人员的玩忽职守,实际上主要原因是NoSQL作为一项新技术导致大多数人对其缺乏足够的知识基础。Application Security研发部门TeamSHATTER的经理Alex Rothacker对上述观点表示赞同。他指出,培训的一大问题在于,大多数NoSQL的从业者往往属于新生代IT人士,他们对于技术了解较多,但往往缺乏足够的安全管理经验。 如果他们从传统关系型数据库入手,那么由于强制性安全机制的完备,他们可以在使用中学习。但NoSQL,只有行家才能通过观察得出正确结论,并在大量研究工作后找到一套完备的安全解决方案。因此可能有90%的从业者由于知识储备、安全经验或是工作时间的局限而无法做到这一点。 NoSQL需在安全性方面进行优化 尽管Phillips认同新技术与旧经验之间存在差异,但企业在推广NoSQL时加大对安全性的关注会起到很大程度的积极作用。他认为此类数据存储机制与传统关系类数据库相比,其中包含着的敏感类信息更少,而且与企业网络内部其它应用程序的接触机会也小得多。 他们并不把这项新技术完全当成数据库使用,正如我们在收集整理大量来自其它应用程序的业务类数据时,往往也会考虑将其作为企业数据存储机制一样,他补充道。当然,如果我打算研发一套具备某种特定功能的社交网络、社交游戏或是某种特殊web应用程序,也很可能会将其部署于防火墙之下。这样一来它不仅与应用程序紧密结合,也不会被企业中的其它部门所触及。 但Rothacker同时表示,这种过度依赖周边安全机制的数据库系统也存在着极其危险的漏洞。一旦系统完全依附于周边安全模型,那么验证机制就必须相对薄弱,而且缺乏多用户管理及数据访问方面的安全保护。只要拥有高权限账户,我们几乎能访问存储机制中的一切数据。举例来说,Brian Sullivan就在去年的黑帽大会上演示了如何在完全不清楚数据具体内容的情况下,将其信息罗列出来甚至导出。 而根据nCircle公司CTO Tim ‘TK’ Keanini的观点,即使是与有限的应用程序相关联,NoSQL也很有可能被暴露在互联网上。在缺少严密网络划分的情况下,它可能成为攻击者窥探存储数据的薄弱环节。因为NoSQL在设计上主要用于互联网规模的部署,所以它很可能被直接连接到互联网中,进而面临大量攻击行为。 其中发生机率最高的攻击行为就是注入式攻击,这也是一直以来肆虐于关系类数据库领域的头号公敌。尽管NoSQL没有将SQL作为查询语言,也并不代表它能够免受注入式攻击的威胁。虽然不少人宣称SQL注入在NoSQL这边不起作用,但其中的原理是完全一致的。攻击者需要做的只是改变自己注入内容的语法形式,Rothacker解释称。也就是说虽然SQL注入不会出现,但JavaScript注入或者JSON注入同样能威胁安全。 此外,攻击者在筹划对这类数据库展开侵袭时,也很可能进一步优化自己的工具。不成熟的安全技术往往带来这样的窘境:需要花费大量时间学习如何保障其安全,但几乎每个IT人士都能迅速掌握攻击活动的组织方法。因此我认为攻击者将会始终走在安全部署的前面,Shulman说道。遗憾的是搞破坏总比防范工作更容易,而我们已经看到不少NoSQL技术方面的公开漏洞,尤其是目前引起热议的、以JSON注入为载体的攻击方式。 NoSQL安全性并非其阻碍 然而,这一切都不应该成为企业使用NoSQL的阻碍,他总结道。我认为归根结底,这应该算是企业的一种商业决策。只要这种选择能够带来吸引力巨大的商业机遇,就要承担一定风险,Shulman解释道。但应该采取一定措施以尽量弱化这种风险。 举例来说,鉴于数据库对外部安全机制的依赖性,Rothacker建议企业积极考虑引入加密方案。他警告称,企业必须对与NoSQL相对接的应用程序代码仔细检查。换言之,企业必须严格挑选负责此类项目部署的人选,确保将最好的人才用于这方面事务,Shulman表示。当大家以NoSQL为基础编写应用程序时,必须启用有经验的编程人员,因为客户端软件是抵挡安全问题的第一道屏障。切实为额外缓冲区的部署留出时间与预算,这能够让员工有闲暇反思自己的工作内容并尽量多顾及安全考量多想一点就是进步。综上所述,这可能与部署传统的关系类数据库也没什么不同。 具有讽刺意味的是,近年来数据库应用程序在安全性方面的提升基本都跟数据库本身没什么关系,nCircle公司安全研究及开发部门总监Oliver Lavery如是说。
创新互联建站主要从事成都做网站、成都网站设计、网页设计、企业做网站、公司建网站等业务。立足成都服务东港,十载网站建设经验,价格优惠、服务专业,欢迎来电咨询建站服务:18980820575
求nosql数据库的资料 自己百度找不到什么
NoSQL数据库的四大分类
键值(Key-Value)存储数据库
这一类数据库主要会使用到一个哈希表,这个表中有一个特定的键和一个指针指向特定的数据。Key/value模型对于IT系统来说的优势在于简单、易部署。但是如果DBA只对部分值进行查询或更新的时候,Key/value就显得效率低下了。[3] 举例如:Tokyo Cabinet/Tyrant, Redis, Voldemort, Oracle BDB.
列存储数据库。
这部分数据库通常是用来应对分布式存储的海量数据。键仍然存在,但是它们的特点是指向了多个列。这些列是由列家族来安排的。如:Cassandra, HBase, Riak.
文档型数据库
文档型数据库的灵感是来自于Lotus Notes办公软件的,而且它同第一种键值存储相类似。该类型的数据模型是版本化的文档,半结构化的文档以特定的格式存储,比如JSON。文档型数据库可 以看作是键值数据库的升级版,允许之间嵌套键值。而且文档型数据库比键值数据库的查询效率更高。如:CouchDB, MongoDb. 国内也有文档型数据库SequoiaDB,已经开源。
图形(Graph)数据库
图形结构的数据库同其他行列以及刚性结构的SQL数据库不同,它是使用灵活的图形模型,并且能够扩展到多个服务器上。NoSQL数据库没有标准的查询语言(SQL),因此进行数据库查询需要制定数据模型。许多NoSQL数据库都有REST式的数据接口或者查询API。[2] 如:Neo4J, InfoGrid, Infinite Graph.
因此,我们总结NoSQL数据库在以下的这几种情况下比较适用:1、数据模型比较简单;2、需要灵活性更强的IT系统;3、对数据库性能要求较高;4、不需要高度的数据一致性;5、对于给定key,比较容易映射复杂值的环境。
共同特征
对于NoSQL并没有一个明确的范围和定义,但是他们都普遍存在下面一些共同特征:
不需要预定义模式:不需要事先定义数据模式,预定义表结构。数据中的每条记录都可能有不同的属性和格式。当插入数据时,并不需要预先定义它们的模式。
无共享架构:相对于将所有数据存储的存储区域网络中的全共享架构。NoSQL往往将数据划分后存储在各个本地服务器上。因为从本地磁盘读取数据的性能往往好于通过网络传输读取数据的性能,从而提高了系统的性能。
弹性可扩展:可以在系统运行的时候,动态增加或者删除结点。不需要停机维护,数据可以自动迁移。
分区:相对于将数据存放于同一个节点,NoSQL数据库需要将数据进行分区,将记录分散在多个节点上面。并且通常分区的同时还要做复制。这样既提高了并行性能,又能保证没有单点失效的问题。
异步复制:和RAID存储系统不同的是,NoSQL中的复制,往往是基于日志的异步复制。这样,数据就可以尽快地写入一个节点,而不会被网络传输引起迟延。缺点是并不总是能保证一致性,这样的方式在出现故障的时候,可能会丢失少量的数据。
BASE:相对于事务严格的ACID特性,NoSQL数据库保证的是BASE特性。BASE是最终一致性和软事务。
NoSQL数据库并没有一个统一的架构,两种NoSQL数据库之间的不同,甚至远远超过两种关系型数据库的不同。可以说,NoSQL各有所长,成功的NoSQL必然特别适用于某些场合或者某些应用,在这些场合中会远远胜过关系型数据库和其他的NoSQL。
适用场景
NoSQL数据库在以下的这几种情况下比较适用:1、数据模型比较简单;2、需要灵活性更强的IT系统;3、对数据库性能要求较高;4、不需要高度的数据一致性;5、对于给定key,比较容易映射复杂值的环境。
什么是nosql非结构化数据库
基本含义NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,是一项全新的数据库革命性运动,早期就有人提出,发展至2009年趋势越发高涨。NoSQL的拥护者们提倡运用非关系型的数据存储,相对于铺天盖地的关系型数据库运用,这一概念无疑是一种全新的思维的注入。NoSQLNoSQL数据库的四大分类键值(Key-Value)存储数据库这一类数据库主要会使用到一个哈希表,这个表中有一个特定的键和一个指针指向特定的数据。Key/value模型对于IT系统来说的优势在于简单、易部署。但是如果DBA只对部分值进行查询或更新的时候,Key/value就显得效率低下了。[3] 举例如:Tokyo Cabinet/Tyrant, Redis, Voldemort, Oracle BDB.列存储数据库。这部分数据库通常是用来应对分布式存储的海量数据。键仍然存在,但是它们的特点是指向了多个列。这些列是由列家族来安排的。如:Cassandra, HBase, Riak.文档型数据库文档型数据库的灵感是来自于Lotus Notes办公软件的,而且它同第一种键值存储相类似。该类型的数据模型是版本化的文档,半结构化的文档以特定的格式存储,比如JSON。文档型数据库可 以看作是键值数据库的升级版,允许之间嵌套键值。而且文档型数据库比键值数据库的查询效率更高。如:CouchDB, MongoDb. 国内也有文档型数据库SequoiaDB,已经开源。图形(Graph)数据库图形结构的数据库同其他行列以及刚性结构的SQL数据库不同,它是使用灵活的图形模型,并且能够扩展到多个服务器上。NoSQL数据库没有标准的查询语言(SQL),因此进行数据库查询需要制定数据模型。许多NoSQL数据库都有REST式的数据接口或者查询API。[2] 如:Neo4J, InfoGrid, Infinite Graph.因此,我们总结NoSQL数据库在以下的这几种情况下比较适用:1、数据模型比较简单;2、需要灵活性更强的IT系统;3、对数据库性能要求较高;4、不需要高度的数据一致性;5、对于给定key,比较容易映射复杂值的环境。
什么是数据库的一致性?一致性弱意味着什么?NoSQL 的弱一致性又为什么是可以被接受的?
举例说明如下:
银行A账户向B账户汇款100元,数据库执行如下过程
从A账户减少100元,然后在B账户增加100元,这个过程称为一个事务
但是:
如果从A账户减少100元后系统出故障了或者出现了其他意外造成B账户没有增加100元(这种事情相信无论是谁遇到也会很无语吧?好吧言归正传)这种情况称为事务不一致,因为一个事务没有做完,所以数据库会将整个过程回滚,你可以理解为就当什么事也没发生过,这种回滚机制就是事务的一种特征,目的就是为了保持数据库的数据库的事务一致性。
为什么大部分NoSQL不提供分布式事务
像MongoDB, Cassandra, HBase, DynamoDB, 和
Riak这些NoSQL缺乏传统的原子事务机制,所谓原子事务机制是可以保证一系列写操作要么全部完成,要么全部不会完成,不会发生只完成一系列中一两个
写操作;因为数据库不提供这种事务机制支持,开发者需要自己编写代码来确保一系列写操作的事务机制,比较复杂和测试。
这些NoSQL数据库不提供事务机制原因在于其分布式特点,一系列写操作中访问的数据可能位于不同的分区服务器,这样的事务就变成分布式事务,在分
布式事务中实现原子性需要彼此协调,而协调是耗费时间的,每台机器在一个大事务过程中必须依次确认,这就需要一种协议确保一个事务中没有任何一台机器写操
作失败。
这种协调是昂贵的,会增加延迟时间,关键问题是,当协调没有完成时,其他操作是不能读取事务中写操作结果的,这是因为事务的all-or-
nothing原理导致,万一协调过程发现某个写操作不能完成,那么需要将其他写操作成功的进行回滚。针对分布式事务的分布式协调对整体数据库性能有严重
影响,不只是吞吐量还包括延迟时间,这样大部分NoSQL数据库因为性能问题就选择不提供分布式事务。
MongoDB, Riak, HBase, 和 Cassandra提供基于单一键的事务,这是因为所有信息都和一个键key有关,这个键是存储在单个服务器上,这样基于单键的事务不会带来复杂的分布式协调。
那么看来扩展性性能和分布式事务是一对矛盾,总要有取舍?实际上是不完全是,现在完全有可能提供高扩展的性能同时提供分布式原子事务。
FIT是这样一个在分布式系统提供原子事务的策略,在fairness公平性, isolation隔离性, 和throughput吞吐量(简称FIT)可以权衡。
一个支持分布式事务的可伸缩分布式系统能够完成这三个属性中两个,公平是事务之间不会相互影响造成延迟;隔离性提供一种幻觉好像整个数据库只有它自
己一个事务,隔离性保证当任何同时发生的事务发生冲突时,能够保证彼此能看到彼此的写操作结果,因此减轻了程序员为避免事务读写冲突的强逻辑推理要求;吞
吐量是指每单元时间数据库能够并发处理多少事务。
FIT是如下进行权衡:
保证公平性fairness 和隔离性isolation, 但是牺牲吞吐量
保证公平性fairness和吞吐量, 牺牲隔离性isolation
保证隔离性isolation和吞吐量throughput, 但是牺牲公平性fairness.
牺牲公平性:放弃公平性,数据库能有更多机会降低分布式事务的成本,主要成本是分布式协调带来的,也就是说,不需要在每个事务过程内对每个机器都依
次确认事务完成,这样排队式的确认commit事务是很浪费时间的,放弃公平性,意味着可以在事务外面进行协调,这样就只是增加了协调时间,不会增加互相
冲突事务因为彼此冲突而不能运行所耽搁的时间,当系统不需要公平性时,需要根据事务的优先级或延迟等标准进行指定先后执行顺序,这样就能够获得很好的吞吐
量。
G-Store是一种放弃公平性的 Isolation-Throughput
的分布式key-value存储,支持多键事务(multi-key transactions),MongoDB 和
HBase在键key在同样分区上也支持多键事务,但是不支持跨分区的事务。
总之:传统分布式事务性能不佳的原因是确保原子性(分布式协调)和隔离性同时重叠,创建一个高吞吐量分布式事务的关键是分离这两种关注,这种分离原
子性和隔离性的视角将导致两种类型的系统,第一种选择是弱隔离性能让冲突事务并行执行和确认提交;第二个选择重新排序原子性和隔离性机制保证它们不会某个
时间重叠,这是一种放弃公平的事务执行,所谓放弃公平就是不再同时照顾原子性和隔离性了,有所倾斜,放弃高标准道德要求就会带来高自由高效率。
什么是NoSQL数据库?
2. 什么是NoSQL?
2.1 NoSQL 概述
NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,
泛指非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,暴露了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。NoSQL数据库的产生就是为了解决大规模数据集合多重数据种类带来的挑战,尤其是大数据应用难题,包括超大规模数据的存储。
(例如谷歌或Facebook每天为他们的用户收集万亿比特的数据)。这些类型的数据存储不需要固定的模式,无需多余操作就可以横向扩展。
2.2 NoSQL代表
MongDB、 Redis、Memcache
3. 关系型数据库与NoSQL的区别?
3.1 RDBMS
高度组织化结构化数据
结构化查询语言(SQL)
数据和关系都存储在单独的表中。
数据操纵语言,数据定义语言
严格的一致性
基础事务
ACID
关系型数据库遵循ACID规则
事务在英文中是transaction,和现实世界中的交易很类似,它有如下四个特性:
A (Atomicity) 原子性
原子性很容易理解,也就是说事务里的所有操作要么全部做完,要么都不做,事务成功的条件是事务里的所有操作都成功,只要有一个操作失败,整个事务就失败,需要回滚。比如银行转账,从A账户转100元至B账户,分为两个步骤:1)从A账户取100元;2)存入100元至B账户。这两步要么一起完成,要么一起不完成,如果只完成第一步,第二步失败,钱会莫名其妙少了100元。
C (Consistency) 一致性
一致性也比较容易理解,也就是说数据库要一直处于一致的状态,事务的运行不会改变数据库原本的一致性约束。
I (Isolation) 独立性
所谓的独立性是指并发的事务之间不会互相影响,如果一个事务要访问的数据正在被另外一个事务修改,只要另外一个事务未提交,它所访问的数据就不受未提交事务的影响。比如现有有个交易是从A账户转100元至B账户,在这个交易还未完成的情况下,如果此时B查询自己的账户,是看不到新增加的100元的
D (Durability) 持久性
持久性是指一旦事务提交后,它所做的修改将会永久的保存在数据库上,即使出现宕机也不会丢失。
3.2 NoSQL
代表着不仅仅是SQL
没有声明性查询语言
没有预定义的模式
键 - 值对存储,列存储,文档存储,图形数据库
最终一致性,而非ACID属性
非结构化和不可预知的数据
CAP定理
高性能,高可用性和可伸缩性
分布式数据库中的CAP原理(了解)
CAP定理:
Consistency(一致性), 数据一致更新,所有数据变动都是同步的
Availability(可用性), 好的响应性能
Partition tolerance(分区容错性) 可靠性
P: 系统中任意信息的丢失或失败不会影响系统的继续运作。
定理:任何分布式系统只可同时满足二点,没法三者兼顾。
CAP理论的核心是:一个分布式系统不可能同时很好的满足一致性,可用性和分区容错性这三个需求,
因此,根据 CAP 原理将 NoSQL 数据库分成了满足 CA 原则、满足 CP 原则和满足 AP 原则三 大类:
CA - 单点集群,满足一致性,可用性的系统,通常在可扩展性上不太强大。
CP - 满足一致性,分区容忍性的系统,通常性能不是特别高。
AP - 满足可用性,分区容忍性的系统,通常可能对一致性要求低一些。
CAP理论就是说在分布式存储系统中,最多只能实现上面的两点。
而由于当前的网络硬件肯定会出现延迟丢包等问题,所以分区容忍性是我们必须需要实现的。
所以我们只能在一致性和可用性之间进行权衡,没有NoSQL系统能同时保证这三点。
说明:C:强一致性 A:高可用性 P:分布式容忍性
举例:
CA:传统Oracle数据库
AP:大多数网站架构的选择
CP:Redis、Mongodb
注意:分布式架构的时候必须做出取舍。
一致性和可用性之间取一个平衡。多余大多数web应用,其实并不需要强一致性。
因此牺牲C换取P,这是目前分布式数据库产品的方向。
4. 当下NoSQL的经典应用
当下的应用是 SQL 与 NoSQL 一起使用的。
代表项目:阿里巴巴商品信息的存放。
去 IOE 化。
ps:I 是指 IBM 的小型机,很贵的,好像好几万一台;O 是指 Oracle 数据库,也很贵的,好几万呢;M 是指 EMC 的存储设备,也很贵的。
难点:
数据类型多样性。
数据源多样性和变化重构。
数据源改造而服务平台不需要大面积重构。
当前文章:nosql的举例子,nosql表示什么
标题网址:http://scyanting.com/article/dsgossi.html