包含nosql建立大数据系统的词条

如何建立一个完整可用的安全大数据平台

创新互联公司是一家做网站、成都网站设计,提供网页设计,网站设计,网站制作,建网站,按需策划设计,网站开发公司,从2013年开始是互联行业建设者,服务者。以提升客户品牌价值为核心业务,全程参与项目的网站策划设计制作,前端开发,后台程序制作以及后期项目运营并提出专业建议和思路。

要建立一个大数据系统,我们需要从数据流的源头跟踪到最后有价值的输出,并在现有的Hadoop和大数据生态圈内根据实际需求挑选并整合各部分合适的组件来构建一个能够支撑多种查询和分析功能的系统平台。这其中既包括了对数据存储的选择,也涵盖了数据线上和线下处理分离等方面的思考和权衡。此外,没有任何一个引入大数据解决方案的商业应用在生产环境上承担的起安全隐患。

1

计算框架篇

大数据的价值

只有在能指导人们做出有价值的决定时,数据才能体现其自身的价值。因此,大数据技术要服务于实际的用途,才是有意义的。一般来说,大数据可以从以下三个方面指导人们做出有价值的决定:

报表生成(比如根据用户历史点击行为的跟踪和综合分析、 应用程序活跃程度和用户粘性计算等);

诊断分析(例如分析为何用户粘性下降、根据日志分析系统为何性能下降、垃圾邮件以及病毒的特征检测等);

决策(例如个性化新闻阅读或歌曲推荐、预测增加哪些功能能增加用户粘性、帮助广告主进行广告精准投放、设定垃圾邮件和病毒拦截策略等)。

图 1

进一步来看,大数据技术从以下三个方面解决了传统技术难以达成的目标(如图1):

在历史数据上的低延迟(交互式)查询,目标是加快决策过程和时间, 例如分析一个站点为何变缓慢并尝试修复它;

在实时数据上的低延迟查询,目的是帮助用户和应用程序在实时数据上做出决策, 例如实时检测并阻拦病毒蠕虫(一个病毒蠕虫可以在1.3秒内攻击1百万台主机);

更加精细高级的数据处理算法,这可以帮助用户做出“更好”的决策, 例如图数据处理、异常点检测、趋势分析及其他机器学习算法。

蛋糕模式

从将数据转换成价值的角度来说,在Hadoop生态圈十年蓬勃成长的过程中,YARN和Spark这二者可以算得上是里程碑事件。Yarn的出现使得集群资源管理和数据处理流水线分离,大大革新并推动了大数据应用层面各种框架的发展(SQL on Hadoop框架, 流数据,图数据,机器学习)。

它使得用户不再受到MapReduce开发模式的约束,而是可以创建种类更为丰富的分布式应用程序,并让各类应用程序运行在统一的架构上,消除了为其他框架维护独有资源的开销。就好比一个多层蛋糕,下面两层是HDFS和Yarn, 而MapReduce就只是蛋糕上层的一根蜡烛而已,在蛋糕上还能插各式各样的蜡烛。

在这一架构体系中,总体数据处理分析作业分三块(图2),在HBase上做交互式查询(Apache Phoenix, Cloudera Impala等), 在历史数据集上编写MapReduce程序抑或利用Hive等做批处理业务, 另外对于实时流数据分析Apache Storm则会是一种标准选择方案。

虽然Yarn的出现极大地丰富了Hadoop生态圈的应用场景,但仍存有两个显而易见的挑战:一是在一个平台上需要维护三个开发堆栈;二是在不同框架内很难共享数据,比如很难在一个框架内对流数据做交互式查询。这也意味着我们需要一个更为统一和支持更好抽象的计算框架的出现。

图 2

一统江湖

Spark的出现使得批处理任务,交互式查询,实时流数据处理被整合到一个统一的框架内(图3),同时Spark和现有的开源生态系统也能够很好地兼容(Hadoop, HDFS, Yarn, Hive, Flume)。 通过启用内存分布数据集,优化迭代工作负载, 用户能够更简单地操作数据,并在此基础上开发更为精细的算法,如机器学习和图算法等。

有三个最主要的原因促使Spark目前成为了时下最火的大数据开源社区(拥有超过来自200多个公司的800多个contributors):

Spark可以扩展部署到超过8000节点并处理PB级别的数据,同时也提供了很多不错的工具供应用开发者进行管理和部署;

Spark提供了一个交互式shell供开发者可以用Scala或者Python即时性试验不同的功能;

Spark提供了很多内置函数使得开发者能够比较容易地写出低耦合的并且能够并发执行的代码,这样开发人员就更能集中精力地为用户提供更多的业务功能而不是花费时间在优化并行化代码之上。

当然Spark也和当年的MapReduce一样不是万灵药,比如对实时性要求很高的流数据处理上Apache Storm还是被作为主流选择, 因为Spark Streaming实际上是microbatch(将一个流数据按时间片切成batch,每个batch提交一个job)而不是事件触发实时系统,所以虽然支持者们认为microbatch在系统延时性上贡献并不多,但在生产环境中和Apache Storm相比还不是特别能满足对低延时要求很高的应用场景。

比如在实践过程中, 如果统计每条消息的平均处理时间,很容易达到毫秒级别,但一旦统计类似service assurance(确保某条消息在毫秒基本能被处理完成)的指标, 系统的瓶颈有时还是不能避免。

但同时我们不能不注意到,在许多用例当中,与流数据的交互以及和静态数据集的结合是很有必要的, 例如我们需要在静态数据集上进行分类器的模型计算,并在已有分类器模型的基础上,对实时进入系统的流数据进行交互计算来判定类别。

由于Spark的系统设计对各类工作(批处理、流处理以及交互式工作)进行了一个共有抽象,并且生态圈内延伸出了许多丰富的库(MLlib机器学习库、SQL语言API、GraphX), 使得用户可以在每一批流数据上进行灵活的Spark相关操作,在开发上提供了许多便利。

Spark的成熟使得Hadoop生态圈在短短一年之间发生了翻天覆地的变化, Cloudera和Hortonworks纷纷加入了Spark阵营,而Hadoop项目群中除了Yarn之外已经没有项目是必须的了(虽然Mesos已在一些场合替代了Yarn), 因为就连HDFS,Spark都可以不依赖。但很多时候我们仍然需要像Impala这样的依赖分布式文件系统的MPP解决方案并利用Hive管理文件到表的映射,因此Hadoop传统生态圈依然有很强的生命力。

另外在这里简要对比一下交互式分析任务中各类SQL on Hadoop框架,因为这也是我们在实际项目实施中经常遇到的问题。我们主要将注意力集中在Spark SQL, Impala和Hive on Tez上, 其中Spark SQL是三者之中历史最短的,论文发表在15年的SIGMOD会议上, 原文对比了数据仓库上不同类型的查询在Shark(Spark最早对SQL接口提供的支持)、Spark SQL和Impala上的性能比较。

也就是说, 虽然Spark SQL在Shark的基础上利用Catalyst optimizer在代码生成上做了很多优化,但总体性能还是比不上Impala, 尤其是当做join操作的时候, Impala可以利用“predicate pushdown”更早对表进行选择操作从而提高性能。

不过Spark SQL的Catalyst optimizer一直在持续优化中,相信未来会有更多更好的进展。Cloudera的Benchmark评测中Impala一直比其他SQL on Hadoop框架性能更加优越,但同时Hortonworks评测则指出虽然单个数据仓库查询Impala可以在很短的时间内完成,但是一旦并发多个查询Hive on Tez的优势就展示出来。另外Hive on Tez在SQL表达能力也要比Impala更强(主要是因为Impala的嵌套存储模型导致的), 因此根据不同的场景选取不同的解决方案是很有必要的。

图 3

各领风骚抑或代有才人出?

近一年比较吸引人眼球的Apache Flink(与Spark一样已有5年历史,前身已经是柏林理工大学一个研究性项目,被其拥趸推崇为继MapReduce, Yarn,Spark之后第四代大数据分析处理框架)。 与Spark相反,Flink是一个真正的实时流数据处理系统,它将批处理看作是流数据的特例,同Spark一样它也在尝试建立一个统一的平台运行批量,流数据,交互式作业以及机器学习,图算法等应用。

Flink有一些设计思路是明显区别于Spark的,一个典型的例子是内存管理,Flink从一开始就坚持自己精确的控制内存使用并且直接操作二进制数据,而Spark一直到1.5版本都还是试用java的内存管理来做数据缓存,这也导致了Spark很容易遭受OOM以及JVM GC带来的性能损失。

但是从另外一个角度来说, Spark中的RDD在运行时被存成java objects的设计模式也大大降低了用户编程设计门槛, 同时随着Tungsten项目的引入,Spark现在也逐渐转向自身的内存管理, 具体表现为Spark生态圈内从传统的围绕RDD(分布式java对象集合)为核心的开发逐渐转向以DataFrame(分布式行对象集合)为核心。

总的来说,这两个生态圈目前都在互相学习,Flink的设计基因更为超前一些,但Spark社区活跃度大很多,发展到目前毫无疑问是更为成熟的选择,比如对数据源的支持(HBase, Cassandra, Parquet, JSON, ORC)更为丰富以及更为统一简洁的计算表示。另一方面,Apache Flink作为一个由欧洲大陆发起的项目,目前已经拥有来自北美、欧洲以及亚洲的许多贡献者,这是否能够一改欧洲在开源世界中一贯的被动角色,我们将在未来拭目以待。

2

NoSQL数据库篇

NoSQL数据库在主流选择上依旧集中在MongoDB, HBase和Cassandra这三者之间。在所有的NoSQL选择中,用C 编写的MongoDB几乎应该是开发者最快也最易部署的选择。MongoDB是一个面向文档的数据库,每个文档/记录/数据(包括爬取的网页数据及其他大型对象如视频等)是以一种BSON(Binary JSON)的二进制数据格式存储, 这使得MongoDB并不需要事先定义任何模式, 也就是模式自由(可以把完全不同结构的记录放在同一个数据库里)。

MongoDB对于完全索引的支持在应用上是很方便的,同时也具备一般NoSQL分布式数据库中可扩展,支持复制和故障恢复等功能。 MongoDB一般应用于高度伸缩性的缓存及大尺寸的JSON数据存储业务中,但不能执行“JOIN”操作,而且数据占用空间也比较大,最被用户诟病的就是由于MongoDB提供的是数据库级锁粒度导致在一些情况下建索引操作会引发整个数据库阻塞。一般来说,MongoDB完全可以满足一些快速迭代的中小型项目的需求。

下面来主要谈谈Cassandra和HBase之间的比较选择。Cassandra和HBase有着截然不同的基因血统。HBase和其底层依赖的系统架构源自于著名的Google FileSystem(发表于2003年)和Google BigTable设计(发表于2006年), 其克服了HDFS注重吞吐量却牺牲I/O的缺点,提供了一个存储中间层使得用户或者应用程序可以随机读写数据。

具体来说,HBase的更新和删除操作实际上是先发生在内存MemStore中, 当MemStore满了以后会Flush到StoreFile, 之后当StoreFile文件数量增长到一定阈值后会触发Compact合并操作,因此HBase的更新操作其实是不断追加的操作,而最终所有更新和删除数据的持久化操作都是在之后Compact过程中进行的。

这使得应用程序在向内存MemStore写入数据后,所做的修改马上就能得到反映,用户读到的数据绝不会是陈旧的数据,保证了I/O高性能和数据完全一致性; 另一方面来说, HBase基于Hadoop生态系统的基因就已经决定了他自身的高度可扩展性、容错性。

在数据模型上,Cassandra和HBase类似实现了一个key-value提供面向列式存储服务,其系统设计参考了 Amazon Dynamo (发表于2007年) 分布式哈希(DHT)的P2P结构(实际上大部分Cassandra的初始工作都是由两位从Amazon的Dynamo组跳槽到Facebook的工程师完成),同样具有很高的可扩展性和容错性等特点。

除此之外, 相对HBase的主从结构,Cassandra去中心化的P2P结构能够更简单地部署和维护,比如增加一台机器只需告知Cassandra系统新节点在哪,剩下的交给系统完成就行了。同时,Cassandra对多数据中心的支持也更好,如果需要在多个数据中心进行数据迁移Cassandra会是一个更优的选择。

Eric Brewer教授提出的经典CAP理论认为任何基于网络的数据共享系统,最多只能满足数据一致性、可用性、分区容忍性三要素中的两个要素。实际分布式系统的设计过程往往都是在一致性与可用性上进行取舍,相比于HBase数据完全一致性的系统设计,Cassandra选择了在优先考虑数据可用性的基础上让用户自己根据应用程序需求决定系统一致性级别。

比如:用户可以配置QUONUM参数来决定系统需要几个节点返回数据才能向客户端做出响应,ONE指只要有一个节点返回数据就可以对客户端做出响应,ALL指等于数据复制份数的所有节点都返回结果才能向客户端做出响应,对于数据一致性要求不是特别高的可以选择ONE,它是最快的一种方式。

从基因和发展历史上来说,HBase更适合用做数据仓库和大规模数据处理与分析(比如对网页数据建立索引), 而Cassandra则更适合用作实时事务和交互式查询服务。Cassandra在国外市场占有比例和发展要远比国内红火, 在不少权威测评网站上排名都已经超过了HBase。目前Apache Cassandra的商业化版本主要由软件公司DataStax进行开发和销售推广。另外还有一些NoSQL分布式数据库如Riak, CouchDB也都在各自支持的厂商推动下取得了不错的发展。

虽然我们也考虑到了HBase在实际应用中的不便之处比如对二级索引的支持程度不够(只支持通过单个行键访问,通过行键的范围查询,全表扫描),不过在明略的大数据基础平台上,目前整合的是依然是HBase。

理由也很简单,HBase出身就与Hadoop的生态系统紧密集成,其能够很容易与其他SQL on Hadoop框架(Cloudera Impala, Apache Phoenix, or Hive on Tez)进行整合,而不需要重新部署一套分布式数据库系统,而且可以很方便地将同样的数据内容在同一个生态系统中根据不同框架需要来变换存储格式(比如存储成Hive表或者Parquet格式)。

我们在很多项目中都有需要用到多种SQL on Hadoop框架,来应对不同应用场景的情况,也体会到了在同一生态系统下部署多种框架的简便性。 但同时我们也遇到了一些问题, 因为HBase项目本身与HDFS和Zookeeper系统分别是由不同开源团队进行维护的,所以在系统整合时我们需要先对HBase所依赖的其他模块进行设置再对HBase进行配置,在一定程度上降低了系统维护的友好性。

目前我们也已经在考虑将Cassandra应用到一些新的客户项目中,因为很多企业级的应用都需要将线上线下数据库进行分离,HBase更适合存储离线处理的结果和数据仓库,而更适合用作实时事务和并发交互性能更好的Cassandra作为线上服务数据库会是一种很好的选择。

3

大数据安全篇

随着越来越多各式各样的数据被存储在大数据系统中,任何对企业级数据的破坏都是灾难性的,从侵犯隐私到监管违规,甚至会造成公司品牌的破坏并最终影响到股东收益。给大数据系统提供全面且有效的安全解决方案的需求已经十分迫切:

大数据系统存储着许多重要且敏感的数据,这些数据是企业长久以来的财富

与大数据系统互动的外部系统是动态变化的,这会给系统引入新的安全隐患

在一个企业的内部,不同Business Units会用不同的方式与大数据系统进行交互,比如线上的系统会实时给集群推送数据、数据科学家团队则需要分析存储在数据仓库内的历史数据、运维团队则会需要对大数据系统拥有管理权限。

因此为了保护公司业务、客户、财务和名誉免于被侵害,大数据系统运维团队必须将系统安全高度提高到和其他遗留系统一样的级别。同时大数据系统并不意味着引入大的安全隐患,通过精细完整的设计,仍然能够把一些传统的系统安全解决方案对接到最新的大数据集群系统中。

一般来说,一个完整的企业级安全框架包括五个部分:

Administration: 大数据集群系统的集中式管理,设定全局一致的安全策略

Authentication: 对用户和系统的认证

Authorization:授权个人用户和组对数据的访问权限

Audit:维护数据访问的日志记录

Data Protection:数据脱敏和加密以达到保护数据的目的

系统管理员要能够提供覆盖以上五个部分的企业级安全基础设施,否则任何一环的缺失都可能给整个系统引入安全性风险。

在大数据系统安全集中式管理平台这块,由Hortonworks推出的开源项目Apache Ranger就可以十分全面地为用户提供Hadoop生态圈的集中安全策略的管理,并解决授权(Authorization)和审计(Audit)。例如,运维管理员可以轻松地为个人用户和组对文件、数据等的访问策略,然后审计对数据源的访问。

与Ranger提供相似功能的还有Cloudera推出的Apache Sentry项目,相比较而言Ranger的功能会更全面一些。

而在认证(Authentication)方面, 一种普遍采用的解决方案是将基于Kerberos的认证方案对接到企业内部的LDAP环境中, Kerberos也是唯一为Hadoop全面实施的验证技术。

另外值得一提的是Apache Knox Gateway项目,与Ranger提高集群内部组件以及用户互相访问的安全不同,Knox提供的是Hadoop集群与外界的唯一交互接口,也就是说所有与集群交互的REST API都通过Knox处理。这样,Knox就给大数据系统提供了一个很好的基于边缘的安全(perimeter-based security)。

基于以上提到的五个安全指标和Hadoop生态圈安全相关的开源项目, 已经足已证明基于Hadoop的大数据平台我们是能够构建一个集中、一致、全面且有效的安全解决方案。

我市再ITjob管网上面找的

什么是NoSQL数据库?

2. 什么是NoSQL?

2.1 NoSQL 概述

NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,

泛指非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,暴露了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。NoSQL数据库的产生就是为了解决大规模数据集合多重数据种类带来的挑战,尤其是大数据应用难题,包括超大规模数据的存储。

(例如谷歌或Facebook每天为他们的用户收集万亿比特的数据)。这些类型的数据存储不需要固定的模式,无需多余操作就可以横向扩展。

2.2 NoSQL代表

MongDB、 Redis、Memcache

3. 关系型数据库与NoSQL的区别?

3.1 RDBMS

高度组织化结构化数据

结构化查询语言(SQL)

数据和关系都存储在单独的表中。

数据操纵语言,数据定义语言

严格的一致性

基础事务

ACID

关系型数据库遵循ACID规则

事务在英文中是transaction,和现实世界中的交易很类似,它有如下四个特性:

A (Atomicity) 原子性

原子性很容易理解,也就是说事务里的所有操作要么全部做完,要么都不做,事务成功的条件是事务里的所有操作都成功,只要有一个操作失败,整个事务就失败,需要回滚。比如银行转账,从A账户转100元至B账户,分为两个步骤:1)从A账户取100元;2)存入100元至B账户。这两步要么一起完成,要么一起不完成,如果只完成第一步,第二步失败,钱会莫名其妙少了100元。

C (Consistency) 一致性

一致性也比较容易理解,也就是说数据库要一直处于一致的状态,事务的运行不会改变数据库原本的一致性约束。

I (Isolation) 独立性

所谓的独立性是指并发的事务之间不会互相影响,如果一个事务要访问的数据正在被另外一个事务修改,只要另外一个事务未提交,它所访问的数据就不受未提交事务的影响。比如现有有个交易是从A账户转100元至B账户,在这个交易还未完成的情况下,如果此时B查询自己的账户,是看不到新增加的100元的

D (Durability) 持久性

持久性是指一旦事务提交后,它所做的修改将会永久的保存在数据库上,即使出现宕机也不会丢失。

3.2 NoSQL

代表着不仅仅是SQL

没有声明性查询语言

没有预定义的模式

键 - 值对存储,列存储,文档存储,图形数据库

最终一致性,而非ACID属性

非结构化和不可预知的数据

CAP定理

高性能,高可用性和可伸缩性

分布式数据库中的CAP原理(了解)

CAP定理:

Consistency(一致性), 数据一致更新,所有数据变动都是同步的

Availability(可用性), 好的响应性能

Partition tolerance(分区容错性) 可靠性

P: 系统中任意信息的丢失或失败不会影响系统的继续运作。

定理:任何分布式系统只可同时满足二点,没法三者兼顾。

CAP理论的核心是:一个分布式系统不可能同时很好的满足一致性,可用性和分区容错性这三个需求,

因此,根据 CAP 原理将 NoSQL 数据库分成了满足 CA 原则、满足 CP 原则和满足 AP 原则三 大类:

CA - 单点集群,满足一致性,可用性的系统,通常在可扩展性上不太强大。

CP - 满足一致性,分区容忍性的系统,通常性能不是特别高。

AP - 满足可用性,分区容忍性的系统,通常可能对一致性要求低一些。

CAP理论就是说在分布式存储系统中,最多只能实现上面的两点。

而由于当前的网络硬件肯定会出现延迟丢包等问题,所以分区容忍性是我们必须需要实现的。

所以我们只能在一致性和可用性之间进行权衡,没有NoSQL系统能同时保证这三点。

说明:C:强一致性 A:高可用性 P:分布式容忍性

举例:

CA:传统Oracle数据库

AP:大多数网站架构的选择

CP:Redis、Mongodb

注意:分布式架构的时候必须做出取舍。

一致性和可用性之间取一个平衡。多余大多数web应用,其实并不需要强一致性。

因此牺牲C换取P,这是目前分布式数据库产品的方向。

4. 当下NoSQL的经典应用

当下的应用是 SQL 与 NoSQL 一起使用的。

代表项目:阿里巴巴商品信息的存放。

去 IOE 化。

ps:I 是指 IBM 的小型机,很贵的,好像好几万一台;O 是指 Oracle 数据库,也很贵的,好几万呢;M 是指 EMC 的存储设备,也很贵的。

难点:

数据类型多样性。

数据源多样性和变化重构。

数据源改造而服务平台不需要大面积重构。

NoSQL自动生成上千万的数据可以有哪些方法

1. CouchDB

所用语言: Erlang

特点:DB一致性,易于使用

使用许可: Apache

协议: HTTP/REST

双向数据复制,

持续进行或临时处理,

处理时带冲突检查,

因此,采用的是master-master复制(见编注2)

MVCC – 写操作不阻塞读操作

可保存文件之前的版本

Crash-only(可靠的)设计

需要不时地进行数据压缩

视图:嵌入式 映射/减少

格式化视图:列表显示

支持进行服务器端文档验证

支持认证

根据变化实时更新

支持附件处理

因此, CouchApps(独立的 js应用程序)

需要 jQuery程序库

最佳应用场景:适用于数据变化较少,执行预定义查询,进行数据统计的应用程序。适用于需要提供数据版本支持的应用程序。

例如: CRM、CMS系统。 master-master复制对于多站点部署是非常有用的。

(编注2:master-master复制:是一种数据库同步方法,允许数据在一组计算机之间共享数据,并且可以通过小组中任意成员在组内进行数据更新。)

2. Redis

所用语言:C/C++

特点:运行异常快

使用许可: BSD

协议:类 Telnet

有硬盘存储支持的内存数据库,

但自2.0版本以后可以将数据交换到硬盘(注意, 2.4以后版本不支持该特性!)

Master-slave复制(见编注3)

虽然采用简单数据或以键值索引的哈希表,但也支持复杂操作,例如 ZREVRANGEBYSCORE。

INCR co (适合计算极限值或统计数据)

支持 sets(同时也支持 union/diff/inter)

支持列表(同时也支持队列;阻塞式 pop操作)

支持哈希表(带有多个域的对象)

支持排序 sets(高得分表,适用于范围查询)

Redis支持事务

支持将数据设置成过期数据(类似快速缓冲区设计)

Pub/Sub允许用户实现消息机制

最佳应用场景:适用于数据变化快且数据库大小可遇见(适合内存容量)的应用程序。

例如:股票价格、数据分析、实时数据搜集、实时通讯。

(编注3:Master-slave复制:如果同一时刻只有一台服务器处理所有的复制请求,这被称为

Master-slave复制,通常应用在需要提供高可用性的服务器集群。)

3. MongoDB

所用语言:C++

特点:保留了SQL一些友好的特性(查询,索引)。

使用许可: AGPL(发起者: Apache)

协议: Custom, binary( BSON)

Master/slave复制(支持自动错误恢复,使用 sets 复制)

内建分片机制

支持 javascript表达式查询

可在服务器端执行任意的 javascript函数

update-in-place支持比CouchDB更好

在数据存储时采用内存到文件映射

对性能的关注超过对功能的要求

建议最好打开日志功能(参数 –journal)

在32位操作系统上,数据库大小限制在约2.5Gb

空数据库大约占 192Mb

采用 GridFS存储大数据或元数据(不是真正的文件系统)

最佳应用场景:适用于需要动态查询支持;需要使用索引而不是 map/reduce功能;需要对大数据库有性能要求;需要使用

CouchDB但因为数据改变太频繁而占满内存的应用程序。

例如:你本打算采用 MySQL或 PostgreSQL,但因为它们本身自带的预定义栏让你望而却步。

4. Riak

所用语言:Erlang和C,以及一些Javascript

特点:具备容错能力

使用许可: Apache

协议: HTTP/REST或者 custom binary

可调节的分发及复制(N, R, W)

用 JavaScript or Erlang在操作前或操作后进行验证和安全支持。

使用JavaScript或Erlang进行 Map/reduce

连接及连接遍历:可作为图形数据库使用

索引:输入元数据进行搜索(1.0版本即将支持)

大数据对象支持( Luwak)

提供“开源”和“企业”两个版本

全文本搜索,索引,通过 Riak搜索服务器查询( beta版)

支持Masterless多站点复制及商业许可的 SNMP监控

最佳应用场景:适用于想使用类似 Cassandra(类似Dynamo)数据库但无法处理

bloat及复杂性的情况。适用于你打算做多站点复制,但又需要对单个站点的扩展性,可用性及出错处理有要求的情况。

例如:销售数据搜集,工厂控制系统;对宕机时间有严格要求;可以作为易于更新的 web服务器使用。

5. Membase

所用语言: Erlang和C

特点:兼容 Memcache,但同时兼具持久化和支持集群

使用许可: Apache 2.0

协议:分布式缓存及扩展

非常快速(200k+/秒),通过键值索引数据

可持久化存储到硬盘

所有节点都是唯一的( master-master复制)

在内存中同样支持类似分布式缓存的缓存单元

写数据时通过去除重复数据来减少 IO

提供非常好的集群管理 web界面

更新软件时软无需停止数据库服务

支持连接池和多路复用的连接代理

最佳应用场景:适用于需要低延迟数据访问,高并发支持以及高可用性的应用程序

例如:低延迟数据访问比如以广告为目标的应用,高并发的 web 应用比如网络游戏(例如 Zynga)

6. Neo4j

所用语言: Java

特点:基于关系的图形数据库

使用许可: GPL,其中一些特性使用 AGPL/商业许可

协议: HTTP/REST(或嵌入在 Java中)

可独立使用或嵌入到 Java应用程序

图形的节点和边都可以带有元数据

很好的自带web管理功能

使用多种算法支持路径搜索

使用键值和关系进行索引

为读操作进行优化

支持事务(用 Java api)

使用 Gremlin图形遍历语言

支持 Groovy脚本

支持在线备份,高级监控及高可靠性支持使用 AGPL/商业许可

最佳应用场景:适用于图形一类数据。这是 Neo4j与其他nosql数据库的最显著区别

例如:社会关系,公共交通网络,地图及网络拓谱

7. Cassandra

所用语言: Java

特点:对大型表格和 Dynamo支持得最好

使用许可: Apache

协议: Custom, binary (节约型)

可调节的分发及复制(N, R, W)

支持以某个范围的键值通过列查询

类似大表格的功能:列,某个特性的列集合

写操作比读操作更快

基于 Apache分布式平台尽可能地 Map/reduce

我承认对 Cassandra有偏见,一部分是因为它本身的臃肿和复杂性,也因为 Java的问题(配置,出现异常,等等)

最佳应用场景:当使用写操作多过读操作(记录日志)如果每个系统组建都必须用 Java编写(没有人因为选用

Apache的软件被解雇)

例如:银行业,金融业(虽然对于金融交易不是必须的,但这些产业对数据库的要求会比它们更大)写比读更快,所以一个自然的特性就是实时数据分析

8. HBase

(配合 ghshephard使用)

所用语言: Java

特点:支持数十亿行X上百万列

使用许可: Apache

协议:HTTP/REST (支持 Thrift,见编注4)

在 BigTable之后建模

采用分布式架构 Map/reduce

对实时查询进行优化

高性能 Thrift网关

通过在server端扫描及过滤实现对查询操作预判

支持 XML, Protobuf, 和binary的HTTP

Cascading, hive, and pig source and sink modules

基于 Jruby( JIRB)的shell

对配置改变和较小的升级都会重新回滚

不会出现单点故障

堪比MySQL的随机访问性能

最佳应用场景:适用于偏好BigTable:)并且需要对大数据进行随机、实时访问的场合。

例如: Facebook消息数据库(更多通用的用例即将出现)

编注4:Thrift

是一种接口定义语言,为多种其他语言提供定义和创建服务,由Facebook开发并开源。

当然,所有的系统都不只具有上面列出的这些特性。这里我仅仅根据自己的观点列出一些我认为的重要特性。与此同时,技术进步是飞速的,所以上述的内容肯定需要不断更新。我会尽我所能地更新这个列表。

创建有效的大数据模型的6个技巧

创建有效的大数据模型的6个技巧

数据建模是一门复杂的科学,涉及组织企业的数据以适应业务流程的需求。它需要设计逻辑关系,以便数据可以相互关联,并支持业务。然后将逻辑设计转换成物理模型,该物理模型由存储数据的存储设备、数据库和文件组成。

历史上,企业已经使用像SQL这样的关系数据库技术来开发数据模型,因为它非常适合将数据集密钥和数据类型灵活地链接在一起,以支持业务流程的信息需求。

不幸的是,大数据现在包含了很大比例的管理数据,并不能在关系数据库上运行。它运行在像NoSQL这样的非关系数据库上。这导致人们认为可能不需要大数据模型。

问题是,企业确实需要对大数据进行数据建模。

以下是大数据建模的六个提示:

1.不要试图将传统的建模技术强加于大数据

传统的固定记录数据在其增长中稳定且可预测的,这使得建模相对容易。相比之下,大数据的指数增长是不可预测的,其无数形式和来源也是如此。当网站考虑建模大数据时,建模工作应该集中在构建开放和弹性数据接口上,因为人们永远不知道何时会出现新的数据源或数据形式。这在传统的固定记录数据世界中并不是一个优先事项。

2.设计一个系统,而不是一个模式

在传统的数据领域中,关系数据库模式可以涵盖业务对其信息支持所需的数据之间的大多数关系和链接。大数据并非如此,它可能没有数据库,或者可能使用像NoSQL这样的数据库,它不需要数据库模式。

正因为如此,大数据模型应该建立在系统上,而不是数据库上。大数据模型应包含的系统组件包括业务信息需求、企业治理和安全、用于数据的物理存储、所有类型数据的集成、开放接口,以及处理各种不同数据类型的能力。

3.寻找大数据建模工具

有商业数据建模工具可以支持Hadoop以及像Tableau这样的大数据报告软件。在考虑大数据工具和方法时,IT决策者应该包括为大数据构建数据模型的能力,这是要求之一。

4.关注对企业的业务至关重要的数据

企业每天都会输入大量的数据,而这些大数据大部分是无关紧要的。创建包含所有数据的模型是没有意义的。更好的方法是确定对企业来说至关重要的大数据,并对这些数据进行建模。

5.提供高质量的数据

如果组织专注于开发数据的正确定义和完整的元数据来描述数据来自何处、其目的是什么等等,那么可以对大数据模型产生更好的数据模型和关系。可以更好地支持支持业务的数据模型。

6.寻找数据的关键切入点

当今最常用的大数据载体之一就是地理位置,这取决于企业的业务和行业,还

有其他用户需要的大数据常用密钥。企业越能够识别数据中的这些常用入口点,就越能够设计出支持企业关键信息访问路径的数据模型。

nosql是什么

NoSQL,泛指非关系型的数据库。随着互联网web2.0网站的兴起,传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯动态网站已经显得力不从心,暴露了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展。NoSQL数据库的产生就是为了解决大规模数据集合多重数据种类带来的挑战,尤其是大数据应用难题。

虽然NoSQL流行语火起来才短短一年的时间,但是不可否认,现在已经开始了第二代运动。尽管早期的堆栈代码只能算是一种实验,然而现在的系统已经更加的成熟、稳定。不过现在也面临着一个严酷的事实:技术越来越成熟——以至于原来很好的NoSQL数据存储不得不进行重写,也有少数人认为这就是所谓的2.0版本。这里列出一些比较知名的工具,可以为大数据建立快速、可扩展的存储库。

NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,是一项全新的数据库革命性运动,早期就有人提出,发展至2009年趋势越发高涨。NoSQL的拥护者们提倡运用非关系型的数据存储,相对于铺天盖地的关系型数据库运用,这一概念无疑是一种全新的思维的注入。

对于NoSQL并没有一个明确的范围和定义,但是他们都普遍存在下面一些共同特征:

不需要预定义模式:不需要事先定义数据模式,预定义表结构。数据中的每条记录都可能有不同的属性和格式。当插入数据时,并不需要预先定义它们的模式。

无共享架构:相对于将所有数据存储的存储区域网络中的全共享架构。NoSQL往往将数据划分后存储在各个本地服务器上。因为从本地磁盘读取数据的性能往往好于通过网络传输读取数据的性能,从而提高了系统的性能。

弹性可扩展:可以在系统运行的时候,动态增加或者删除结点。不需要停机维护,数据可以自动迁移。

分区:相对于将数据存放于同一个节点,NoSQL数据库需要将数据进行分区,将记录分散在多个节点上面。并且通常分区的同时还要做复制。这样既提高了并行性能,又能保证没有单点失效的问题。

异步复制:和RAID存储系统不同的是,NoSQL中的复制,往往是基于日志的异步复制。这样,数据就可以尽快地写入一个节点,而不会被网络传输引起迟延。缺点是并不总是能保证一致性,这样的方式在出现故障的时候,可能会丢失少量的数据。

BASE:相对于事务严格的ACID特性,NoSQL数据库保证的是BASE特性。BASE是最终一致性和软事务。

NoSQL数据库并没有一个统一的架构,两种NoSQL数据库之间的不同,甚至远远超过两种关系型数据库的不同。可以说,NoSQL各有所长,成功的NoSQL必然特别适用于某些场合或者某些应用,在这些场合中会远远胜过关系型数据库和其他的NoSQL。

NoSQL 数据库:何时使用 NoSQL 与 SQL?

NoSQL 数据库因其功能性、易于开发性和可扩展性而广受认可,它们越来越多地用于大数据和实时 Web 应用程序,在本文中,我们通过示例讨论 NoSQL、何时使用 NoSQL 与 SQL 及其用例。

NoSQL是一种下一代数据库管理系统 (DBMS)。NoSQL 数据库具有灵活的模式,可用于构建具有大量数据和高负载的现代应用程序。

“NoSQL”一词最初是由 Carlo Strozzi 在 1998 年创造的,尽管自 1960 年代后期以来就已经存在类似的数据库。然而,NoSQL 的发展始于 2009 年初,并且发展迅速。

在处理大量数据时,任何关系数据库管理系统 (RDBMS) 的响应时间都会变慢。为了解决这个问题,我们可以通过升级现有硬件来“扩大”信息系统,这非常昂贵。但是,NoSQL 可以更好地横向扩展并且更具成本效益。

NoSQL 对于非结构化或非常大的数据对象(例如聊天日志数据、视频或图像)非常有用,这就是为什么 NoSQL 在微软、谷歌、亚马逊、Meta (Facebook) 等互联网巨头中特别受欢迎的原因。

一些流行的 NoSQL 数据库包括:

随着企业更快地积累更大的数据集,结构化数据和关系模式并不总是适合。有必要使用非结构化数据和大型对象来更好地捕获这些信息。

传统的 RDBMS 使用 SQL(结构化查询语言)语法来存储和检索结构化数据,相反,NoSQL 数据库包含广泛的功能,可以存储和检索结构化、半结构化、非结构化和多态数据。

有时,NoSQL 也被称为“ 不仅仅是 SQL ”,强调它可能支持类似 SQL 的语言或与 SQL 数据库并列。SQL 和 NoSQL DBMS 之间的一个区别是 JOIN 功能。SQL 数据库使用 JOIN 子句来组合来自两个或多个表的行,因为 NoSQL 数据库本质上不是表格的,所以这个功能并不总是可行或相关的。

但是,一些 NoSQL DBMS 可以执行类似于 JOIN的操作——就像 MongoDB 一样。这并不意味着不再需要 SQL DBMS,相反,NoSQL 和 SQL 数据库倾向于以不同的方式解决类似的问题。

一般来说,在以下情况下,NoSQL 比 SQL 更可取:

许多行业都在采用 NoSQL,取代关系数据库,从而为某些业务应用程序提供更高的灵活性和可扩展性,下面给出了 NoSQL 数据库的一些企业用例。

内容管理是一组用于收集、管理、传递、检索和发布任何格式的信息的过程,包括文本、图像、音频和视频。NoSQL 数据库可以通过其灵活和开放的数据模型为存储多媒体内容提供更好的选择。

例如,福布斯在短短几个月内就构建了一个基于 MongoDB 的定制内容管理系统,以更低的成本为他们提供了更大的敏捷性。

大数据是指太大而无法通过传统处理系统处理的数据集,实时存储和检索大数据的系统在分析 历史 数据的同时使用流处理来摄取新数据,这是一系列非常适合 NoSQL 数据库的功能。

Zoom使用 DynamoDB(按需模式)使其数据能够在没有性能问题的情况下进行扩展,即使该服务在 COVID-19 大流行的早期使用量激增。

物联网设备具有连接到互联网或通信网络的嵌入式软件和传感器,能够在无需人工干预的情况下收集和共享数据。随着数十亿台设备生成数不清的数据,IoT NoSQL 数据库为 IoT 服务提供商提供了可扩展性和更灵活的架构。

Freshub就是这样的一项服务,它从 MySQL 切换到 MongoDB,以更好地处理其大型、动态、非统一的数据集。

拥有数十亿智能手机用户,可扩展性正成为在移动设备上提供服务的企业面临的最大挑战。具有更灵活数据模型的 NoSQL DBMS 通常是完美的解决方案。

例如,The Weather Channel使用 MongoDB 数据库每分钟处理数百万个请求,同时还处理用户数据并提供天气更新。


文章名称:包含nosql建立大数据系统的词条
转载源于:http://scyanting.com/article/dsgssoh.html