python函数subs,Python函数随机
使用python的sympy解符号方程组后,如何将结果带入之后的符号表达式
Sympy是python中非常强大的符号运算库,可以以书写习惯表示数学表达式。下面介绍用Sympy求方程数值解的方法。
十年的永登网站建设经验,针对设计、前端、开发、售后、文案、推广等六对一服务,响应快,48小时及时工作处理。全网营销推广的优势是能够根据用户设备显示端的尺寸不同,自动调整永登建站的显示方式,使网站能够适用不同显示终端,在浏览器中调整网站的宽度,无论在任何一种浏览器上浏览网站,都能展现优雅布局与设计,从而大程度地提升浏览体验。创新互联从事“永登网站设计”,“永登网站推广”以来,每个客户项目都认真落实执行。
下面代码全部在
from sympy import *
init_printing(use_unicode=True) # 按书写习惯输出
下运行。
数学表达式的输入
首先声明符号:
x = symbols('x')
即计算机中的变量x代表数学表达式中的x。在后文输出中所有的x会显示为x。如果x=symbols('x0'),则输入的方程中所有x将在输出中以x0表示。
如果需要希腊字母
l, r = symbol('lambda rho')
l, r将分别以λ,ρ表示。可以在一个表达式中同时声明多个符号。
或者使用var()声明:
var('x')
与上面等效。
声明表达式:
f = (5/x)*(exp(x)-1)-exp(x)
此时若输出f可以看到书写习惯的表达式。由于表达式在markdown下显示不正常,在此不放置示例。注意f的类型是class 'sympy.core.add.Add'
求f(x)=0数值解
因为有的函数零点不止一个,因此在Sympy中解的输出为一个list。使用solve(表达式,自变量符号)可以解析地解方程:
s, = solve(f, x)
这里根据上面f的赋值,得到s为
LambertW(-5e**-5)+5
其中用了特殊函数表达。
我们需要求这个结果的数值近似,则输出
s.evalf()
得到输出
4.96511423174428
就是方程f(x)=0的数值解。
求给定自变量x值时函数f(x)的值 | 将表达式转化为函数
f.evalf(subs = {x:4.96})
得到f(4.96)的数值
0.141885450782171
如果需要以计算机函数的形式定义函数f(x),则可以使用lambdify()进行转化:
f_func = lambdify(x, f)
之后可以调用
f_func(4.96)
输出
0.141885450782
利用这个方法可以测试方程的数值算法,如使用sympy接口写牛顿法等。
Python的函数都有哪些
【常见的内置函数】
1、enumerate(iterable,start=0)
是python的内置函数,是枚举、列举的意思,对于一个可迭代的(iterable)/可遍历的对象(如列表、字符串),enumerate将其组成一个索引序列,利用它可以同时获得索引和值。
2、zip(*iterables,strict=False)
用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表。如果各个迭代器的元素个数不一致,则返回列表长度与最短的对象相同,利用*号操作符,可以将元组解压为列表。
3、filter(function,iterable)
filter是将一个序列进行过滤,返回迭代器的对象,去除不满足条件的序列。
4、isinstance(object,classinfo)
是用来判断某一个变量或者是对象是不是属于某种类型的一个函数,如果参数object是classinfo的实例,或者object是classinfo类的子类的一个实例,
返回True。如果object不是一个给定类型的的对象, 则返回结果总是False
5、eval(expression[,globals[,locals]])
用来将字符串str当成有效的表达式来求值并返回计算结果,表达式解析参数expression并作为Python表达式进行求值(从技术上说是一个条件列表),采用globals和locals字典作为全局和局部命名空间。
【常用的句式】
1、format字符串格式化
format把字符串当成一个模板,通过传入的参数进行格式化,非常实用且强大。
2、连接字符串
常使用+连接两个字符串。
3、if...else条件语句
Python条件语句是通过一条或多条语句的执行结果(True或者False)来决定执行的代码块。其中if...else语句用来执行需要判断的情形。
4、for...in、while循环语句
循环语句就是遍历一个序列,循环去执行某个操作,Python中的循环语句有for和while。
5、import导入其他脚本的功能
有时需要使用另一个python文件中的脚本,这其实很简单,就像使用import关键字导入任何模块一样。
python作业求帮助
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# File name: parabolic
# Project name: parabolic_equation
"""
.. moduleauthor::
.. Module.. name parabolic of procjet parabolic_equation
"""
from sympy import *
import matplotlib.pyplot as plt
import numpy as np
def _filterComplex(inputvalue, description='inputvalue'):
try:
str(inputvalue).index('I')
except ValueError:
return False
else:
return True
def _checkBool(inputvalue, description='inputvalue'):
"""
:param inputvalue:
:param description:
:return:
"""
if not isinstance(inputvalue, bool):
raise TypeError(
'The {0} must be boolean. Given: {1!r}'.format(description, inputvalue))
def _checkNumerical(inputvalue, description='inputvalue'):
"""
:param inputvalue:
:param description:
:return:
"""
try:
inputvalue + 1
except TypeError:
raise TypeError(
'The {0} must be numerical. Given: {1!r}'.format(description, inputvalue))
def _drawTowPara(expr_1, expr_2, inputmin, inputmax ,step=0.1):
"""
:param expr_1:
:param expr_2:
:param inputmin:
:param inputmax:
:param step:
:param expr_1_evalwithY:
:param expr_2_evalwithY:
:return:
"""
_checkNumerical(inputmin, 'xmin')
_checkNumerical(inputmax, 'xmax')
_checkNumerical(step, 'step')
y1List = []
x1List = []
y2List = []
x2List = []
if expr_1.vertical is True:
x1List = np.arange(inputmin, inputmax, step)
for x in x1List:
y1List.append(expr_1.evaluates_Y(x))
else:
y1List = np.arange(inputmin, inputmax, step)
for y in y1List:
x1List.append(expr_1.evaluates_X(y))
if expr_2.vertical is True:
x2List = np.arange(inputmin, inputmax, step)
for x in x2List:
y2List.append(expr_2.evaluates_Y(x))
else:
y2List = np.arange(inputmin, inputmax, step)
for y in y2List:
x2List.append(expr_2.evaluates_X(y))
plt.plot(x1List, y1List, '+')
plt.plot(x2List, y2List, '-')
plt.show()
def _solveCrossing(expr_1, expr_2):
"""
:param expr_1:
:param expr_2:
:return:
"""
x = Symbol('x')
y = Symbol('y')
print "Given the first expression: {0!r}".format(expr_1.expr)
print "Given the first expression: {0!r}".format(expr_2.expr)
ResultList = solve([expr_1.expr, expr_2.expr], [x, y])
Complex = False
ResultListTrue = []
for i in range(0, (len(ResultList)),1):
if _filterComplex(ResultList[i][0], 'x') or _filterComplex(ResultList[i][1], 'y'):
Complex = True
else:
ResultListTrue.append(ResultList[i])
if len(ResultListTrue) == 0 and Complex:
print "Two hyperbolic do not intersect, and there is imaginary value."
elif len(ResultListTrue) == 1:
print "Two hyperbolic tangent.:"
print ResultListTrue
else:
print "Two hyperbolic intersection, and Points are:"
for iterm in ResultListTrue:
print iterm
class Parabolic():
"""
"""
def __init__(self, a, b, c, vertical=True):
"""
:return:
"""
_checkNumerical(a, 'a')
_checkNumerical(b, 'b')
_checkNumerical(c, 'c')
_checkBool(vertical, 'vertical')
self.a = a
self.b = b
self.c = c
self.vertical = vertical
self.y = Symbol('y')
self.x = Symbol('x')
self.xarray = []
self.yarray = []
if vertical is True:
self.expr = (self.x**2)*self.a + self.x*self.b + self.c
else:
self.expr = (self.y**2)*self.a + self.y*self.b + self.c
def __repr__(self):
"""
:return:
"""
if self.vertical is True:
return "The Equation look like: {0!r}".format(self.expr)
else:
return "The Equation look like: {0!r}".format(self.expr)
def evaluates_X(self, inputvalue):
"""
:param inputvalue:
:return:
"""
_checkNumerical(inputvalue, 'y')
return self.expr.subs(self.y, inputvalue)
def evaluates_Y(self, inputvalue):
"""
:param inputvalue:
:return:
"""
_checkNumerical(inputvalue, 'x')
return self.expr.subs(self.x, inputvalue)
def getArrays(self, inputmin, inputmax, step=1):
"""
:param inputmin:
:param inputmax:
:param step:
:return:
"""
_checkNumerical(inputmin, 'xmin')
_checkNumerical(inputmax, 'xmax')
_checkNumerical(step, 'step')
if self.vertical is True:
for x in range(inputmin, inputmax, step):
self.xarray.append(x)
self.yarray.append(self.evaluates_Y(x))
else:
for y in range(inputmin, inputmax, step):
self.yarray.append(y)
self.xarray.append(self.evaluates_X(y))
def drawPara(self, inputmin, inputmax, step=1):
"""
:param inputmin:
:param inputmax:
:param step:
:return:
"""
_checkNumerical(inputmin, 'xmin')
_checkNumerical(inputmax, 'xmax')
_checkNumerical(step, 'step')
yList = []
xList = []
if self.vertical is True:
xList = np.arange(inputmin, inputmax, step)
for x in xList:
yList.append(self.evaluates_Y(x))
else:
yList = np.arange(inputmin, inputmax, step)
for y in yList:
xList.append(self.evaluates_X(y))
plt.plot(xList, yList, '+')
plt.show()
if __name__ == '__main__':
pa1 = Parabolic(-5,3,6)
pa2 = Parabolic(-5,2,5, False)
print pa1
print pa2
_solveCrossing(pa1, pa2)
_drawTowPara(pa1, pa2, -10, 10, 0.1)
# 这就是你想要的,代码解决了你的大部分问题,可以求两条双曲线交点,或者直线与双曲线交#点,或者两直线交点. 不过定义双曲线时候使用的是一般式.也也尽可能做了测试,如果有#问题的话,追问吧
python内置函数有哪些
python常见的内置函数有:
1. abs()函数返回数字的绝对值。
2. all() 函数用于判断给定的参数中的所有元素是否都为 TRUE,如果是返回 True,否则返回 False。元素除了是 0、空、None、False 外都算 True;空元组、空列表返回值为True。
3. any() 函数用于判断给定的参数是否全部为False,是则返回False,如果有一个为True,则返回True。 元素除了是 0、空、False外都算 TRUE。
4. bin()函数返回一个整数int或者长整数long int的二进制表示。
5. bool() 函数用于将给定参数转换为布尔类型,如果参数不为空或不为0,返回True;参数为0或没有参数,返回False。
6. bytearray()方法返回一个新字节数组。这个数组里的元素是可变的,并且每个元素的值范围: 0 = x 256(即0-255)。即bytearray()是可修改的二进制字节格式。
7. callable()函数用于检查一个对象是否可调用的。对于函数、方法、lambda函式、类以及实现了 __call__ 方法的类实例, 它都返回 True。(可以加括号的都可以调用)
8. chr()函数用一个范围在range(256)内(即0~255)的整数作参数,返回一个对应的ASCII数值。
9. dict()函数用来将元组/列表转换为字典格式。
10. dir()函数不带参数时,返回当前范围内的变量、方法和定义的类型列表;带参数时,返回参数的属性、方法列表。
扩展资料:
如何查看python3.6的内置函数?
1、首先先打开python自带的集成开发环境IDLE;
2、然后我们直接输入"dir(__builtins__)",需要注意的是builtins左右的下划线都是两个;
3、回车之后我们就可以看到python所有的内置函数;
4、接下来我们学习第二种查看python内置函数的方法,我们直接在IDLE中输入"import builtins",然后输入"dir(builtins)";
5、然后回车,同样的这个方法也可以得到所有的python内置的函数;
6、这里我们可以使用python内置函数len()来查看python内置函数的个数,这里我们直接输入"len(dir(builtins))";
7、回车之后我们可以看到系统返回值153,说明我们现在这个版本中有153个内置函数;
8、最后我们介绍一个比较有用的内置函数"help",python内置函数有一百多个,我们当然不能记住所有的函数,这里python提供了一个"help"函数,我们来看一个例子一起来体会一下help函数的用法,这里我们直接输入"help(len)",然后回车,会看到系统给我们对于内置函数"len"的解释,当然对于其他函数可能会有更加详细的解释以及用法提示。
python3的sympy
print(“字符串”),5/2和5//2的结果是不同的5/2为2.5,5//2为2.
python2需要导入from_future_import division执行普通的除法。
1/2和1//2的结果0.5和0.
%号为取模运算。
乘方运算为2**3,-2**3和-(2**3)是等价的。
from sympy import*导入库
x,y,z=symbols('x y z'),定义变量
init_printing(use_unicode=True)设置打印方式。
python的内部常量有pi,
函数simplify,simplify(sin(x)**2 + cos(x)**2)化简结果为1,
simplify((x**3 + x**2 - x - 1)/(x**2 + 2*x + 1))化简结果为x-1。化简伽马函数。simplify(gamma(x)/gamma(x - 2))得(x-2)(x-1)。
expand((x + 1)**2)展开多项式。
expand((x + 1)*(x - 2) - (x - 1)*x)
因式分解。factor(x**2*z + 4*x*y*z + 4*y**2*z)得到z*(x + 2*y)**2
from_future_import division
x,y,z,t=symbols('x y z t')定义变量,
k, m, n = symbols('k m n', integer=True)定义三个整数变量。
f, g, h = symbols('f g h', cls=Function)定义的类型为函数。
factor_list(x**2*z + 4*x*y*z + 4*y**2*z)得到一个列表,表示因式的幂,(1, [(z, 1), (x + 2*y, 2)])
expand((cos(x) + sin(x))**2)展开多项式。
expr = x*y + x - 3 + 2*x**2 - z*x**2 + x**3,collected_expr = collect(expr, x)将x合并。将x元素按阶次整合。
collected_expr.coeff(x, 2)直接取出变量collected_expr的x的二次幂的系数。
cancel()is more efficient thanfactor().
cancel((x**2 + 2*x + 1)/(x**2 + x))
,expr = (x*y**2 - 2*x*y*z + x*z**2 + y**2 - 2*y*z + z**2)/(x**2 - 1),cancel(expr)
expr = (4*x**3 + 21*x**2 + 10*x + 12)/(x**4 + 5*x**3 + 5*x**2 + 4*x),apart(expr)
asin(1)
trigsimp(sin(x)**2 + cos(x)**2)三角函数表达式化简,
trigsimp(sin(x)**4 - 2*cos(x)**2*sin(x)**2 + cos(x)**4)
trigsimp(sin(x)*tan(x)/sec(x))
trigsimp(cosh(x)**2 + sinh(x)**2)双曲函数。
三角函数展开,expand_trig(sin(x + y)),acos(x),cos(acos(x)),expand_trig(tan(2*x))
x, y = symbols('x y', positive=True)正数,a, b = symbols('a b', real=True)实数,z, t, c = symbols('z t c')定义变量的方法。
sqrt(x) == x**Rational(1, 2)判断是否相等。
powsimp(x**a*x**b)幂函数的乘法,不同幂的乘法,必须先定义a和b。powsimp(x**a*y**a)相同幂的乘法。
powsimp(t**c*z**c),注意,powsimp()refuses to do the simplification if it is not valid.
powsimp(t**c*z**c, force=True)这样的话就可以得到化简过的式子。声明强制进行化简。
(z*t)**2,sqrt(x*y)
第一个展开expand_power_exp(x**(a + b)),expand_power_base((x*y)**a)展开,
expand_power_base((z*t)**c, force=True)强制展开。
powdenest((x**a)**b),powdenest((z**a)**b),powdenest((z**a)**b, force=True)
ln(x),x, y ,z= symbols('x y z', positive=True),n = symbols('n', real=True),
expand_log(log(x*y))展开为log(x) + log(y),但是python3没有。这是因为需要将x定义为positive。这是必须的,否则不会被展开。expand_log(log(x/y)),expand_log(log(x**n))
As withpowsimp()andpowdenest(),expand_log()has aforceoption that can be used to ignore assumptions。
expand_log(log(z**2), force=True),强制展开。
logcombine(log(x) + log(y)),logcombine(n*log(x)),logcombine(n*log(z), force=True)。
factorial(n)阶乘,binomial(n, k)等于c(n,k),gamma(z)伽马函数。
hyper([1, 2], [3], z),
tan(x).rewrite(sin)得到用正弦表示的正切。factorial(x).rewrite(gamma)用伽马函数重写阶乘。
expand_func(gamma(x + 3))得到,x*(x + 1)*(x + 2)*gamma(x),
hyperexpand(hyper([1, 1], [2], z)),
combsimp(factorial(n)/factorial(n - 3))化简,combsimp(binomial(n+1, k+1)/binomial(n, k))化简。combsimp(gamma(x)*gamma(1 - x))
自定义函数
def list_to_frac(l):
expr = Integer(0)
for i in reversed(l[1:]):
expr += i
expr = 1/expr
return l[0] + expr
list_to_frac([x, y, z])结果为x + 1/z,这个结果是错误的。
syms = symbols('a0:5'),定义syms,得到的结果为(a0, a1, a2, a3, a4)。
这样也可以a0, a1, a2, a3, a4 = syms, 可能是我的操作错误 。发现python和自动缩进有关,所以一定看好自动缩进的距离。list_to_frac([1, 2, 3, 4])结果为43/30。
使用cancel可以将生成的分式化简,frac = cancel(frac)化简为一个分数线的分式。
(a0*a1*a2*a3*a4 + a0*a1*a2 + a0*a1*a4 + a0*a3*a4 + a0 + a2*a3*a4 + a2 + a4)/(a1*a2*a3*a4 + a1*a2 + a1*a4 + a3*a4 + 1)
a0, a1, a2, a3, a4 = syms定义a0到a4,frac = apart(frac, a0)可将a0提出来。frac=1/(frac-a0)将a0去掉取倒。frac = apart(frac, a1)提出a1。
help("modules"),模块的含义,help("modules yourstr")模块中包含的字符串的意思。,
help("topics"),import os.path + help("os.path"),help("list"),help("open")
# -*- coding: UTF-8 -*-声明之后就可以在ide中使用中文注释。
定义
l = list(symbols('a0:5'))定义列表得到[a0, a1, a2, a3, a4]
fromsympyimport*
x,y,z=symbols('x y z')
init_printing(use_unicode=True)
diff(cos(x),x)求导。diff(exp(x**2), x),diff(x**4, x, x, x)和diff(x**4, x, 3)等价。
diff(expr, x, y, 2, z, 4)求出表达式的y的2阶,z的4阶,x的1阶导数。和diff(expr, x, y, y, z, 4)等价。expr.diff(x, y, y, z, 4)一步到位。deriv = Derivative(expr, x, y, y, z, 4)求偏导。但是不显示。之后用deriv.doit()即可显示
integrate(cos(x), x)积分。定积分integrate(exp(-x), (x, 0, oo))无穷大用2个oo表示。integrate(exp(-x**2-y**2),(x,-oo,oo),(y,-oo,oo))二重积分。print(expr)print的使用。
expr = Integral(log(x)**2, x),expr.doit()积分得到x*log(x)**2 - 2*x*log(x) + 2*x。
integ.doit()和integ = Integral((x**4 + x**2*exp(x) - x**2 - 2*x*exp(x) - 2*x -
exp(x))*exp(x)/((x - 1)**2*(x + 1)**2*(exp(x) + 1)), x)连用。
limit(sin(x)/x,x,0),not-a-number表示nan算不出来,limit(expr, x, oo),,expr = Limit((cos(x) - 1)/x, x, 0),expr.doit()连用。左右极限limit(1/x, x, 0, '+'),limit(1/x, x, 0, '-')。。
Series Expansion级数展开。expr = exp(sin(x)),expr.series(x, 0, 4)得到1 + x + x**2/2 + O(x**4),,x*O(1)得到O(x),,expr.series(x, 0, 4).removeO()将无穷小移除。exp(x-6).series(x,x0=6),,得到
-5 + (x - 6)**2/2 + (x - 6)**3/6 + (x - 6)**4/24 + (x - 6)**5/120 + x + O((x - 6)**6, (x, 6))最高到5阶。
f=Function('f')定义函数变量和h=Symbol('h')和d2fdx2=f(x).diff(x,2)求2阶,,as_finite_diff(dfdx)函数和as_finite_diff(d2fdx2,[-3*h,-h,2*h]),,x_list=[-3,1,2]和y_list=symbols('a b c')和apply_finite_diff(1,x_list,y_list,0)。
Eq(x, y),,solveset(Eq(x**2, 1), x)解出来x,当二式相等。和solveset(Eq(x**2 - 1, 0), x)等价。solveset(x**2 - 1, x)
solveset(x**2 - x, x)解,solveset(x - x, x, domain=S.Reals)解出来定义域。solveset(exp(x), x) # No solution exists解出EmptySet()表示空集。
等式形式linsolve([x + y + z - 1, x + y + 2*z - 3 ], (x, y, z))和矩阵法linsolve(Matrix(([1, 1, 1, 1], [1, 1, 2, 3])), (x, y, z))得到{(-y - 1, y, 2)}
A*x = b 形式,M=Matrix(((1,1,1,1),(1,1,2,3))),system=A,b=M[:,:-1],M[:,-1],linsolve(system,x,y,z),,solveset(x**3 - 6*x**2 + 9*x, x)解多项式。roots(x**3 - 6*x**2 + 9*x, x),得出,{3: 2, 0: 1},有2个3的重根,1个0根。solve([x*y - 1, x - 2], x, y)解出坐标。
f, g = symbols('f g', cls=Function)函数的定义,解微分方程diffeq = Eq(f(x).diff(x, x) - 2*f(x).diff(x) + f(x), sin(x))再和dsolve(diffeq,f(x))结合。得到Eq(f(x), (C1 + C2*x)*exp(x) + cos(x)/2),dsolve(f(x).diff(x)*(1 - sin(f(x))), f(x))解出来Eq(f(x) + cos(f(x)), C1),,
Matrix([[1,-1],[3,4],[0,2]]),,Matrix([1, 2, 3])列表示。M=Matrix([[1,2,3],[3,2,1]])
N=Matrix([0,1,1])
M*N符合矩阵的乘法。M.shape显示矩阵的行列数。
M.row(0)获取M的第0行。M.col(-1)获取倒数第一列。
M.col_del(0)删掉第1列。M.row_del(1)删除第二行,序列是从0开始的。M = M.row_insert(1, Matrix([[0, 4]]))插入第二行,,M = M.col_insert(0, Matrix([1, -2]))插入第一列。
M+N矩阵相加,M*N,3*M,M**2,M**-1,N**-1表示求逆。M.T求转置。
eye(3)单位。zeros(2, 3),0矩阵,ones(3, 2)全1,diag(1, 2, 3)对角矩阵。diag(-1, ones(2, 2), Matrix([5, 7, 5]))生成Matrix([
[-1, 0, 0, 0],
[ 0, 1, 1, 0],
[ 0, 1, 1, 0],
[ 0, 0, 0, 5],
[ 0, 0, 0, 7],
[ 0, 0, 0, 5]])矩阵。
Matrix([[1, 0, 1], [2, -1, 3], [4, 3, 2]])
一行一行显示,,M.det()求行列式。M.rref()矩阵化简。得到结果为Matrix([
[1, 0, 1, 3],
[0, 1, 2/3, 1/3],
[0, 0, 0, 0]]), [0, 1])。
M = Matrix([[1, 2, 3, 0, 0], [4, 10, 0, 0, 1]]),M.nullspace()
Columnspace
M.columnspace()和M = Matrix([[1, 2, 3, 0, 0], [4, 10, 0, 0, 1]])
M = Matrix([[3, -2, 4, -2], [5, 3, -3, -2], [5, -2, 2, -2], [5, -2, -3, 3]])和M.eigenvals()得到{3: 1, -2: 1, 5: 2},,This means thatMhas eigenvalues -2, 3, and 5, and that the eigenvalues -2 and 3 have algebraic multiplicity 1 and that the eigenvalue 5 has algebraic multiplicity 2.
P, D = M.diagonalize(),P得Matrix([
[0, 1, 1, 0],
[1, 1, 1, -1],
[1, 1, 1, 0],
[1, 1, 0, 1]]),,D为Matrix([
[-2, 0, 0, 0],
[ 0, 3, 0, 0],
[ 0, 0, 5, 0],
[ 0, 0, 0, 5]])
P*D*P**-1 == M返回为True。lamda = symbols('lamda')。
lamda = symbols('lamda')定义变量,p = M.charpoly(lamda)和factor(p)
expr = x**2 + x*y,srepr(expr)可以将表达式说明计算法则,"Add(Pow(Symbol('x'), Integer(2)), Mul(Symbol('x'), Symbol('y')))"。。
x = symbols('x')和x = Symbol('x')是一样的。srepr(x**2)得到"Pow(Symbol('x'), Integer(2))"。Pow(x, 2)和Mul(x, y)得到x**2。x*y
type(2)得到class 'int',type(sympify(2))得到class 'sympy.core.numbers.Integer'..srepr(x*y)得到"Mul(Symbol('x'), Symbol('y'))"。。。
Add(Pow(x, 2), Mul(x, y))得到"Add(Mul(Integer(-1), Pow(Symbol('x'), Integer(2))), Mul(Rational(1, 2), sin(Mul(Symbol('x'), Symbol('y')))), Pow(Symbol('y'), Integer(-1)))"。。Pow函数为幂次。
expr = Add(x, x),expr.func。。Integer(2).func,class 'sympy.core.numbers.Integer',,Integer(0).func和Integer(-1).func,,,expr = 3*y**2*x和expr.func得到class 'sympy.core.mul.Mul',,expr.args将表达式分解为得到(3, x, y**2),,expr.func(*expr.args)合并。expr == expr.func(*expr.args)返回True。expr.args[2]得到y**2,expr.args[1]得到x,expr.args[0]得到3.。
expr.args[2].args得到(y, 2)。。y.args得到空括号。Integer(2).args得到空括号。
from sympy import *
E**(I*pi)+1,可以看出,I和E,pi已将在sympy内已定义。
x=Symbol('x'),,expand( E**(I*x) )不能展开,expand(exp(I*x),complex=True)可以展开,得到I*exp(-im(x))*sin(re(x)) + exp(-im(x))*cos(re(x)),,x=Symbol("x",real=True)将x定义为实数。再展开expand(exp(I*x),complex=True)得到。I*sin(x) + cos(x)。。
tmp = series(exp(I*x), x, 0, 10)和pprint(tmp)打印出来可读性好,print(tmp)可读性不好。。pprint将公式用更好看的格式打印出来,,pprint( series( cos(x), x, 0, 10) )
integrate(x*sin(x), x),,定积分integrate(x*sin(x), (x, 0, 2*pi))。。
用双重积分求解球的体积。
x, y, r = symbols('x,y,r')和2 * integrate(sqrt(r*r-x**2), (x, -r, r))计算球的体积。计算不来,是因为sympy不知道r是大于0的。r = symbols('r', positive=True)这样定义r即可。circle_area=2*integrate(sqrt(r**2-x**2),(x,-r,r))得到。circle_area=circle_area.subs(r,sqrt(r**2-x**2))将r替换。
integrate(circle_area,(x,-r,r))再积分即可。
expression.sub([(x,y),(y,x)])又换到原来的状况了。
expression.subs(x, y),,将算式中的x替换成y。。
expression.subs({x:y,u:v}) : 使用字典进行多次替换。。
expression.subs([(x,y),(u,v)]) : 使用列表进行多次替换。。
网站题目:python函数subs,Python函数随机
地址分享:http://scyanting.com/article/dsidpgi.html