python定义画图函数,python怎么画函数图

Python基础入门-函数的定义与使用

通过关键字def来创建函数,def的作用是实现python中函数的创建

网站制作、网站建设的关注点不是能为您做些什么网站,而是怎么做网站,有没有做好网站,给创新互联公司一个展示的机会来证明自己,这并不会花费您太多时间,或许会给您带来新的灵感和惊喜。面向用户友好,注重用户体验,一切以用户为中心。

函数定义过程:

函数名+()小括号执行函数

函数体内对全局变量只能读取,不能修改

局部变量,无法在函数体外使用

python 使用 lambda 来创建匿名函数。

所谓匿名,意即不再使用 def 语句这样标准的形式定义一个函数。

python如何定义和调用函数

1、函数定义

①使用def关键字定义函数

def 函数名(参数1.参数2.参数3...):

"""文档字符串,docstring,用来说明函数的作用"""

#函数体

return 表达式

注释的作用:说明函数是做什么的,函数有什么功能。

③遇到冒号要缩进,冒号后面所有的缩进的代码块构成了函数体,描述了函数是做什么的,即函数的功能是什么。Python函数的本质与数学中的函数的本质是一致的。

2、函数调用

①函数必须先定义,才能调用,否则会报错。

②无参数时函数的调用:函数名(),有参数时函数的调用:函数名(参数1.参数2.……)

③不要在定义函数的时候在函数体里面调用本身,否则会出不来,陷入循环调用。

④函数需要调用函数体才会被执行,单纯的只是定义函数是不会被执行的。

⑤Debug工具中Step into进入到调用的函数里,Step Into My Code进入到调用的模块里函数。

python绘制函数图像

raw_input获取的输入是字符串,不能直接用np.array,需要用split进行切分,然后强制转化成数值类型,才能用plot函数

我把你的代码稍微修改了一下,可能不太漂亮,不过能运行了

x=[1,2,3]

a = raw_input('function')

a = a.split(' ')#依空格对字符串a进行切分,如果是用逗号分隔,则改成a.split(',')

b = []

for i in range(len(a)):#把切分好的字符强制转化成int类型,如果是小数,将int改为float

b.append(int(a[i]))

plt.plot(x, b, label='x', color="green", linewidth=1)

用Python画图

今天开始琢磨用Python画图,没使用之前是一脸懵的,我使用的开发环境是Pycharm,这个输出的是一行行命令,这个图画在哪里呢?

搜索之后发现,它会弹出一个对话框,然后就开始画了,比如下图

第一个常用的库是Turtle,它是Python语言中一个很流行的绘制图像的函数库,这个词的意思就是乌龟,你可以想象下一个小乌龟在一个x和y轴的平面坐标系里,从原点开始根据指令控制,爬行出来就是绘制的图形了。

它最常用的指令就是旋转和移动,比如画个圆,就是绕着圆心移动;再比如上图这个怎么画呢,其实主要就两个命令:

turtle.forward(200)

turtle.left(170)

第一个命令是移动200个单位并画出来轨迹

第二个命令是画笔顺时针转170度,注意此时并没有移动,只是转角度

然后呢? 循环重复就画出来这个图了

好玩吧。

有需要仔细研究的可以看下这篇文章 ,这个牛人最后用这个库画个移动的钟表,太赞了。

Turtle虽好玩,但是我想要的是我给定数据,然后让它画图,这里就找到另一个常用的画图的库了。

Matplotlib是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地行制图。其中,matplotlib的pyplot模块一般是最常用的,可以方便用户快速绘制二维图表。

使用起来也挺简单,

首先import matplotlib.pyplot as plt 导入画图的图。

然后给定x和y,用这个命令plt.plot(x, y)就能画图了,接着用plt.show()就可以把图形展示出来。

接着就是各种完善,比如加标题,设定x轴和y轴标签,范围,颜色,网格等等,在 这篇文章里介绍的很详细。

现在互联网的好处就是你需要什么内容,基本上都能搜索出来,而且还是免费的。

我为什么要研究这个呢?当然是为了用,比如我把比特币的曲线自己画出来可好?

假设现在有个数据csv文件,一列是日期,另一列是比特币的价格,那用这个命令画下:

这两列数据读到pandas中,日期为df['time']列,比特币价格为df['ini'],那我只要使用如下命令

plt.plot(df['time'], df['ini'])

plt.show()

就能得到如下图:

自己画的是不是很香,哈哈!

然后呢,我在上篇文章 中介绍过求Ahr999指数,那可不可以也放到这张图中呢?不就是加一条命令嘛

plt.plot(df['time'], df['Ahr999'])

图形如下:

但是,Ahr999指数怎么就一条线不动啊, 原来两个Y轴不一致,显示出来太怪了,需要用多Y轴,问题来了。

继续谷歌一下,把第二个Y轴放右边就行了,不过呢得使用多图,重新绘制

fig = plt.figure() # 多图

ax1 = fig.add_subplot(111)

ax1.plot(df['time'], df['ini'], label="BTC price")  # 绘制第一个图比特币价格

ax1.set_ylabel('BTC price') # 加上标签

# 第二个直接对称就行了

ax2 = ax1.twinx()# 在右边增加一个Y轴

ax2.plot(df['time'], df['Ahr999'], 'r', label="ahr999")  # 绘制第二个图Ahr999指数,红色

ax2.set_ylim([0, 50])# 设定第二个Y轴范围

ax2.set_ylabel('ahr999')

plt.grid(color="k", linestyle=":")# 网格

fig.legend(loc="center")#图例

plt.show()

跑起来看看效果,虽然丑了点,但终于跑通了。

这样就可以把所有指数都绘制到一张图中,等等,三个甚至多个Y轴怎么加?这又是一个问题,留给爱思考爱学习的你。

有了自己的数据,建立自己的各个指数,然后再放到图形界面中,同时针对异常情况再自动进行提醒,比如要抄底了,要卖出了,用程序做出自己的晴雨表。


网页标题:python定义画图函数,python怎么画函数图
URL地址:http://scyanting.com/article/dsscjis.html