python中去重函数,python数列去重
python 数组去重的方法
如:arr =['a','d','e','a']
10年积累的网站制作、成都做网站经验,可以快速应对客户对网站的新想法和需求。提供各种问题对应的解决方案。让选择我们的客户得到更好、更有力的网络服务。我虽然不认识你,你也不认识我。但先网站策划后付款的网站建设流程,更有湘桥免费网站建设让你可以放心的选择与我们合作。
用: arr= sorted(set(arr), key=arr.index)
同: arr = list(set(arr))
arr.sort(key=arr.index)
⚠️直接set(arr)也可以去除重复元素,只是新数组的顺序就不是原来的顺序了。
如:arr=[{'text':wuyuan,'value':1},{'text':默认,'value':2},{'text':默认,'value':2},
{'text':wyy,'value':4}]
用: f = lambda x,y:x if y in x else x + [y]
arr = reduce(f, [[], ] + arr)
⚠️这里去除的字典里面的键值对必须是完全一样的。
Python 去重,统计,lambda函数
df.drop_duplicates('item_name')
方法一:
df.drop_duplicates('item_name').count()
方法二:
df['item_name'].nunique()
结果:50
附:nunique()和unique()的区别:
unique()是以 数组形式(numpy.ndarray)返回列的所有唯一值(特征的所有唯一值)
nunique()即返回的是唯一值的个数
比如:df['item_name'].unique()
要求:将下表中经验列将按周统计的转换为经验不限,保留学历
df1['经验'] = df1['经验'].apply(lambda x: '经验不限'+ x[-2:] if '周' in x else x)
#解释:将‘5天/周6个月’变成‘经验不限’,然后保留学历‘本科’
方法二:定义函数
def dataInterval(ss):
if '周' in ss:
return '经验不限'+ ss[-2:]
return ss
df1['经验'] = df1['经验'].apply(dataInterval)
python中对list去重的多种方法
python中对list去重的多种方法
今天遇到一个问题,在同事随意的提示下,用了 itertools.groupby 这个函数。不过这个东西最终还是没用上。
问题就是对一个list中的新闻id进行去重,去重之后要保证顺序不变。
直观方法
最简单的思路就是:
这样也可行,但是看起来不够爽。
用set
另外一个解决方案就是用set:
代码如下:
ids = [1,4,3,3,4,2,3,4,5,6,1]
ids = list(set(ids))
这样的结果是没有保持原来的顺序。
按照索引再次排序
最后通过这种方式解决:
代码如下:
ids = [1,4,3,3,4,2,3,4,5,6,1]
news_ids = list(set(ids))
news_ids.sort(ids.index)
使用itertools.grouby
文章一开始就提到itertools.grouby, 如果不考虑列表顺序的话可用这个:
代码如下:
ids = [1,4,3,3,4,2,3,4,5,6,1]
ids.sort()
it = itertools.groupby(ids)
for k, g in it:
print k
关于itertools.groupby的原理可以看这里:
网友补充:用reduce
网友reatlk留言给了另外的解决方案。我补充并解释到这里:
代码如下:
In [5]: ids = [1,4,3,3,4,2,3,4,5,6,1]
In [6]: func = lambda x,y:x if y in x else x + [y]
In [7]: reduce(func, [[], ] + ids)
Out[7]: [1, 4, 3, 2, 5, 6]
上面是我在ipython中运行的代码,其中的 lambda x,y:x if y in x else x + [y] 等价于 lambda x,y: y in x and x or x+[y] 。
网站栏目:python中去重函数,python数列去重
URL地址:http://scyanting.com/article/dsscjoc.html