Elasticsearch搜索打分计算原理浅析-创新互联

搜索打分计算几个关键词

从网站建设到定制行业解决方案,为提供成都做网站、网站建设服务体系,各种行业企业客户提供网站建设解决方案,助力业务快速发展。创新互联建站将不断加快创新步伐,提供优质的建站服务。
  • TF: token frequency ,某个搜索字段分词后再document中字段(待搜索的字段)中出现的次数

  • IDF:inverse document frequency,逆文档频率,某个搜索的字段在所有document中出现的次数取反

  • TFNORM:token frequency normalized,词频归一化
  • BM25:算法:(freq + k1 * (1 - b + b * dl / avgdl))

两个文档如下:

{
        "_index" : "movies",
        "_type" : "_doc",
        "_id" : "321697",
        "_score" : 6.6273837,
        "_source" : {
          "title" : "Steve Jobs"
      }
}
{
        "_index" : "movies",
        "_type" : "_doc",
        "_id" : "23706",
        "_score" : 6.0948296,
        "_source" : {
          "title" : "All About Steve"
      }
}

如果我们通过titlematch查询

GET /movies/_search
{
  "query": {
    "match": {
      "title": "steve"
    }
  }
}

那么从打分结果就可以看出第一个文档打分高于第二个,这个具体原因是:

TF方面看在带搜索字段上出现的频率一致

IDF方面看在整个文档中出现的频率一致

TFNORM方面则不一样了,第一个文档中该词占比为1/2,第二个文档中该词占比为1/3,故而第一个文档在该搜索下打分比第二个索引高,所以ES算法时使用了TFNORM计算方式freq / (freq + k1 * (1 - b + b * dl / avgdl))

最后的ES中的TF算法融合了词频归一化BM25

如果我们要查看具体Elasticsearch一个打分算法,则可以通过如下命令展示

GET /movies/_search
{
  // 和MySQL的执行计划类似
  "explain": true, 
  "query": {
    "match": {
      "title": "steve"
    }
  }
}

执行结果,查看其中一个

{
    "_shard": "[movies][1]",
    "_node": "pqNhgutvQfqcLqLEzIDnbQ",
    "_index": "movies",
    "_type": "_doc",
    "_id": "321697",
    "_score": 6.6273837,
    "_source": {
        "overview": "Set backstage at three iconic product launches and ending in 1998 with the unveiling of the iMac, Steve Jobs takes us behind the scenes of the digital revolution to paint an intimate portrait of the brilliant man at its epicenter.",
        "voteAverage": 6.8,
        "keywords": [
            {
                "id": 5565,
                "name": "biography"
            },
            {
                "id": 6104,
                "name": "computer"
            },
            {
                "id": 15300,
                "name": "father daughter relationship"
            },
            {
                "id": 157935,
                "name": "apple computer"
            },
            {
                "id": 161160,
                "name": "steve jobs"
            },
            {
                "id": 185722,
                "name": "based on true events"
            }
        ],
        "releaseDate": "2015-01-01T00:00:00.000Z",
        "runtime": 122,
        "originalLanguage": "en",
        "title": "Steve Jobs",
        "productionCountries": [
            {
                "iso_3166_1": "US",
                "name": "United States of America"
            }
        ],
        "revenue": 34441873,
        "genres": [
            {
                "id": 18,
                "name": "Drama"
            },
            {
                "id": 36,
                "name": "History"
            }
        ],
        "originalTitle": "Steve Jobs",
        "popularity": 53.670525,
        "tagline": "Can a great man be a good man?",
        "spokenLanguages": [
            {
                "iso_639_1": "en",
                "name": "English"
            }
        ],
        "id": 321697,
        "voteCount": 1573,
        "productionCompanies": [
            {
                "name": "Universal Pictures",
                "id": 33
            },
            {
                "name": "Scott Rudin Productions",
                "id": 258
            },
            {
                "name": "Legendary Pictures",
                "id": 923
            },
            {
                "name": "The Mark Gordon Company",
                "id": 1557
            },
            {
                "name": "Management 360",
                "id": 4220
            },
            {
                "name": "Cloud Eight Films",
                "id": 6708
            }
        ],
        "budget": 30000000,
        "homepage": "http://www.stevejobsthefilm.com",
        "status": "Released"
    },
    -          }
                ]
            }
        ]
    }
}

此时可以看到结果多出了以下的一组数据(执行计划)

{
    "_explanation": {
        "value": 6.6273837,
        // title字段值steve在所有匹配的1526个文档中的权重
        "description": "weight(title:steve in 1526) [PerFieldSimilarity], result of:",
        "details": [
            {
                // value = idf.value * tf.value * 2.2
                // 6.6273837 = 6.4412656 * 0.46767938 * 2.2
                "value": 6.6273837,
                "description": "score(freq=1.0), product of:",
                "details": [
                    {
                        "value": 2.2,
                        // 放大因子,这个数值可以在创建索引的时候指定,默认值是2.2
                        "description": "boost",
                        "details": []
                    },
                    {
                        "value": 6.4412656,
                        "description": "idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:",
                        "details": [
                            {
                                "value": 2,
                                "description": "n, number of documents containing term",
                                "details": []
                            },
                            {
                                "value": 1567,
                                "description": "N, total number of documents with field",
                                "details": []
                            }
                        ]
                    },
                    {
                        "value": 0.46767938,
                        "description": "tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:",
                        "details": [
                            {
                                "value": 1,
                                "description": "freq, occurrences of term within document",
                                "details": []
                            },
                            // 这块提现了BM25算法((freq + k1 * (1 - b + b * dl / avgdl)))
                            {
                                "value": 1.2,
                                "description": "k1, term saturation parameter",
                                "details": []
                            },
                            {
                                "value": 0.75,
                                "description": "b, length normalization parameter",
                                "details": []
                            },
                            // 这块就可以提现出一个归一化的操作算法
                            {
                                "value": 2,
                                "description": "dl, length of field",
                                "details": []
                            },
                            {
                                "value": 2.1474154,
                                "description": "avgdl, average length of field",
                                "details": []
                            }
                        ]
                    }
                ]
            }
        ]
    }
}

另外有需要云服务器可以了解下创新互联cdcxhl.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


本文题目:Elasticsearch搜索打分计算原理浅析-创新互联
路径分享:http://scyanting.com/article/gchhi.html