平衡查找二叉树
AVL树是平衡二叉查找树。在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为高度平衡树。查找、插入和删除在平均和最坏情况下都是O(log n)。增加和删除可能需要通过一次或多次树旋转来重新平衡这个树。它能保持二叉树的高度平衡,尽量降低二叉树的高度,减少树的平均搜索长度。
让客户满意是我们工作的目标,不断超越客户的期望值来自于我们对这个行业的热爱。我们立志把好的技术通过有效、简单的方式提供给客户,将通过不懈努力成为客户在信息化领域值得信任、有价值的长期合作伙伴,公司提供的服务项目有:域名注册、虚拟主机、营销软件、网站建设、鸡西梨树网站维护、网站推广。
AVL树的性质
左子树和右子树的高度之差的绝对值不超过1
树中的每个左子树和右子树都是AVL树
节点的平衡因子是它的左子树的高度减去它的右子树的高度。带有平衡因子 1、0 或 -1 的节点被认为是平衡的。带有平衡因子 -2 或 2 的节点被认为是不平衡的,并需要重新平衡这个树。平衡因子可以直接存储在每个节点中,或从可能存储在节点中的子树高度计算出来。
#includeusing namespace std; //平衡搜索二叉树 template struct AVLTreeNode { AVLTreeNode(K& key, V& val) :_key(key) , _val(val) , _left(NULL) , _right(NULL) , _parent(NULL) , _bf(0) {} K _key; V _val; AVLTreeNode * _left; AVLTreeNode * _right; AVLTreeNode * _parent; int _bf;// Balance Factor }; template class AVLTree { typedef AVLTreeNode Node; public: AVLTree() :_root(NULL) {} bool Insert(K& key,V& val) { if (_root == NULL) { _root = new Node(key, val); return true; } else { Node* cur = _root; Node* parent = NULL; while (cur) { if (cur->_key < key) { parent = cur; cur = cur->_right; } else if (cur->_key>key) { parent = cur; cur = cur->_left; } else return false; } cur = new Node(key, val); if (parent->_key > key) { parent->_left = cur; cur->_parent = parent; } else { parent->_right = cur; cur->_parent = parent; } //更新平衡因子,不平衡进行旋转 while (parent != NULL) { if (cur == parent->_left) ++parent->_bf; else --parent->_bf; //跳出条件 if (parent->_bf == 0) break; else if (parent->_bf == 1 || parent->_bf == -1) { cur = parent; parent = cur->_parent; } else//-2 2旋转 { if (parent->_bf == 2) { if (1== cur->_bf)//右旋 { RotateR(parent); } else//左右旋 { RotateLR(parent); } } else { if (1== cur->_bf)//左右旋 { RotateRL(parent); } else//左旋 { RotateL(parent); } } break; } } return true; } } Node* Find(K& key) { if (_root == NULL) return false; else { Node* cur = _root; while (cur) { if (cur->_key > key) cur = cur->_left; else if (cur->_key < key) cur = cur->_right; else return cur; } return NULL; } } bool Remove(K& key) { if (_root == NULL) return false; Node* cur = _root; Node* parent = NULL; while (cur) { if (cur->_key < key) { parent = cur; cur = cur->_right; } else if (cur->_key>key) { parent = cur; cur = cur->_left; } else { Node* del = NULL; if (cur->_left == NULL) { del = cur; if (cur == _root) { _root = cur->_right; _root->_parent = NULL; } else { if (parent->_left == cur) { parent->_left = cur->_right; cur->_parent = parent; } else { parent->_right = cur->_right; cur->_parent = parent; } } } else if (cur->_right==NULL) { del = cur; if (cur == _root) { _root = cur->_left; _root->_parent = NULL; } else { if (parent->_left == cur) { parent->_left = cur->_left; cur->_parent = parent; } else { parent->_right = cur->_left; cur->_parent = parent; } } } else//左右都不为空 { Node* rightMin = root->_right; Node* parent = root; while (rightMin->_left) { parent = rightMin; rightMin = rightMin->_left; } root->_key = rightMin->_key; root->_val = rightMin->_val; del = rightMin; if (parent->_left == rightMin) parent->_left = NULL; else parent->_right = NULL; } delete del; } } return false; } void InOrder() { _InOrder(_root); } bool IsBalance() { return _IsBalance(_root); } int Height() { return _Height(_root); } protected: int _Height(Node* root) { if (root == NULL) return 0; int left = _Height(root->_left); int right = _Height(root->_right); return left > right ? left + 1 : right + 1; } bool _IsBalance(Node* root) { if (root == NULL) return true; int left = _Height(root->_left); int right = _Height(root->_right); if (left-right != root->_bf) { cout << "平衡因子错误,不平衡" << root->_key << endl; return false; } return abs(left - right)<2&&_IsBalance(root->_left) && _IsBalance(root->_right); } void _InOrder(Node* root) { if (root == NULL) return; _InOrder(root->_left); cout << root->_key << " "; _InOrder(root->_right); } void RotateL(Node* parent) { Node* subR = parent->_right; Node* subRL = subR->_left; parent->_right = subRL; if (subRL) subRL->_parent = parent; Node* ppNode = parent->_parent; subR->_left = parent; parent->_parent = subR; if (ppNode == NULL) { _root = subR; subR->_parent = NULL; } else { if (ppNode->_left == parent) ppNode->_left = subR; else ppNode->_right = subR; subR->_parent = ppNode; } subR->_bf = parent->_bf = 0; } void RotateR(Node* parent) { Node* subL = parent->_left; Node* subLR = subL->_right; parent->_left = subLR; if (subLR) subLR->_parent = parent; Node* ppNode = parent->_parent; subL->_right = parent; parent->_parent = subL; if (ppNode == NULL) { _root = subL; subL->_parent = NULL; } else { if (ppNode->_left == parent) ppNode->_left = subL; else ppNode->_right = subL; subL->_parent = ppNode; } subL->_bf = parent->_bf = 0; } void RotateLR(Node* parent) { Node* subL = parent->_left; Node* subLR = subL->_right; int bf = subLR->_bf; RotateL(parent->_left); RotateR(parent); if (bf == 1) { parent->_bf = -1; subL->_bf = 0; } else if (bf == -1) { subL->_bf = 1; parent->_bf = 0; } else subL->_bf = parent->_bf = 0; } void RotateRL(Node* parent) { Node* subR = parent->_right; Node* subRL = subR->_left; int bf = subRL->_bf; RotateR(parent->_right); RotateL(parent); if (bf == 1) { parent->_bf = 0; subR->_bf = -1; } else if (bf == -1) { subR->_bf = 0; parent->_bf = 1; } else subR->_bf = parent->_bf = 0; } private: Node* _root; }; void Test1() { AVLTree t; int a[]={16, 3, 7, 11, 9, 26, 18, 14, 15}; for (int i = 0; i < sizeof(a) / sizeof(a[0]); ++i) { t.Insert(a[i], i); } t.InOrder(); t.IsBalance(); } int main() { Test1(); system("pause"); return 0; }
本文名称:平衡查找二叉树
URL网址:http://scyanting.com/article/ggiogi.html