HDFS入门和基本操作
1、HDFS 是做什么的
Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS,hdfs是分布式计算中数据存储管理的基础,是基于流数据模式访问和处理超大文件的需求而开发的,可以运行于廉价的商用服务器上。它所具有的高容错、高可靠性、高可扩展性、高获得性、高吞吐率等特征为海量数据提供了不怕故障的存储,为超大数据集(Large Data Set)的应用处理带来了很多便利。
超过10年行业经验,技术领先,服务至上的经营模式,全靠网络和口碑获得客户,为自己降低成本,也就是为客户降低成本。到目前业务范围包括了:成都网站设计、网站制作,成都网站推广,成都网站优化,整体网络托管,微信平台小程序开发,微信开发,成都App定制开发,同时也可以让客户的网站和网络营销和我们一样获得订单和生意!
2、为什么选择 HDFS 存储数据
之所以选择 HDFS 存储数据,因为 HDFS 具有以下优点:
数据自动保存多个副本。它通过增加副本的形式,提高容错性。
某一个副本丢失以后,它可以自动恢复,这是由 HDFS 内部机制实现的,我们不必关心。
它是通过移动计算而不是移动数据。
它会把数据位置暴露给计算框架。
处理数据达到 GB、TB、甚至PB级别的数据。
能够处理百万规模以上的文件数量,数量相当之大。
能够处理10K节点的规模。
一次写入,多次读取。文件一旦写入不能修改,只能追加。
它能保证数据的一致性。
5、可构建在廉价机器上
它通过多副本机制,提高可靠性。
它提供了容错和恢复机制。比如某一个副本丢失,可以通过其它副本来恢复。
当然 HDFS 也有它的劣势,并不适合所有的场合:
比如毫秒级的来存储数据,这是不行的,它做不到。
它适合高吞吐率的场景,就是在某一时间内写入大量的数据。但是它在低延时的情况下是不行的,比如毫秒级以内读取数据,这样它是很难做到的。
存储大量小文件(这里的小文件是指小于HDFS系统的Block大小的文件(默认64M))的话,它会占用 NameNode大量的内存来存储文件、目录和块信息。这样是不可取的,因为NameNode的内存总是有限的
小文件存储的寻道时间会超过读取时间,它违反了HDFS的设计目标。
一个文件只能有一个写,不允许多个线程同时写。
仅支持数据 append(追加),不支持文件的随机修改。
3、内部结构
HDFS 如何上传数据
HDFS 采用Master/Slave的架构来存储数据,这种架构主要由四个部分组成,分别为HDFS Client、NameNode、DataNode和Secondary NameNode。下面我们分别介绍这四个组成部分
- 文件切分。文件上传 HDFS 的时候,Client 将文件切分成 一个一个的Block,然后进行存储。
- 与 NameNode 交互,获取文件的位置信息。
- 与 DataNode 交互,读取或者写入数据。
- Client 提供一些命令来管理 HDFS,比如启动或者关闭HDFS。
- Client 可以通过一些命令来访问 HDFS。
- 管理 HDFS 的名称空间
- 管理数据块(Block)映射信息
- 配置副本策略
- 处理客户端读写请求。
- 存储实际的数据块。
- 执行数据块的读/写操作。
- 辅助 NameNode,分担其工作量。
- 定期合并 fsimage和fsedits,并推送给NameNode。
- 在紧急情况下,可辅助恢复 NameNode。
5、HDFS 如何读取文件
HDFS的文件读取原理,主要包括以下几个步骤:
- 首先调用FileSystem对象的open方法,其实获取的是一个DistributedFileSystem的实例。
- DistributedFileSystem通过RPC(远程过程调用)获得文件的第一批block的locations,同一block按照重复数会返回多个locations,这些locations按照hadoop拓扑结构排序,距离客户端近的排在前面。
- 前两步会返回一个FSDataInputStream对象,该对象会被封装成 DFSInputStream对象,DFSInputStream可以方便的管理datanode和namenode数据流。客户端调用read方法,DFSInputStream就会找出离客户端最近的datanode并连接datanode。
- 数据从datanode源源不断的流向客户端。
- 如果第一个block块的数据读完了,就会关闭指向第一个block块的datanode连接,接着读取下一个block块。这些操作对客户端来说是透明的,从客户端的角度来看只是读一个持续不断的流。
- 如果第一批block都读完了,DFSInputStream就会去namenode拿下一批blocks的location,然后继续读,如果所有的block块都读完,这时就会关闭掉所有的流。
6、HDFS 如何写入文件
HDFS的文件写入原理,主要包括以下几个步骤:
- 客户端通过调用 DistributedFileSystem 的create方法,创建一个新的文件。
- DistributedFileSystem 通过 RPC(远程过程调用)调用 NameNode,去创建一个没有blocks关联的新文件。创建前,NameNode 会做各种校验,比如文件是否存在,客户端有无权限去创建等。如果校验通过,NameNode 就会记录下新文件,否则就会抛出IO异常。
- 前两步结束后会返回 FSDataOutputStream 的对象,和读文件的时候相似,FSDataOutputStream 被封装成 DFSOutputStream,DFSOutputStream 可以协调 NameNode和 DataNode。客户端开始写数据到DFSOutputStream,DFSOutputStream会把数据切成一个个小packet,然后排成队列 data queue。
- DataStreamer 会去处理接受 data queue,它先问询 NameNode 这个新的 block 最适合存储的在哪几个DataNode里,比如重复数是3,那么就找到3个最适合的 DataNode,把它们排成一个 pipeline。DataStreamer 把 packet 按队列输出到管道的第一个 DataNode 中,第一个 DataNode又把 packet 输出到第二个 DataNode 中,以此类推。
- DFSOutputStream 还有一个队列叫 ack queue,也是由 packet 组成,等待DataNode的收到响应,当pipeline中的所有DataNode都表示已经收到的时候,这时akc queue才会把对应的packet包移除掉。
- 客户端完成写数据后,调用close方法关闭写入流。
- DataStreamer 把剩余的包都刷到 pipeline 里,然后等待 ack 信息,收到最后一个 ack 后,通知 DataNode 把文件标示为已完成。
7、命令行接口
两个属性项: fs.default.name 用来设置Hadoop的默认文件系统,设置hdfs URL则是配置HDFS为Hadoop的默认文件系统。dfs.replication 设置文件系统块的副本个数
文件系统的基本操作:hadoop fs -help可以获取所有的命令及其解释
常用的有:
- hadoop fs -ls / 列出hdfs文件系统根目录下的目录和文件
- hadoop fs -put
从本地文件系统将一个文件上传到HDFS - hadoop fs -get
从本地文件系统将一个文件上传到HDFS - hadoop fs -rm -r
删除文件或文件夹及文件夹下的文件 - hadoop fs -mkdir
在hdfs中新建文件夹
操作路程
cd hadoop.2.5.2
cd sbin
./start-all.sh //启动hdfs服务,yarn服务
cd ..
cd bin
./haoop dfs –ls / 解释:./hdfs 是hdfs命令 dfs参数 表示在hadoop里有效 –ls /显示hdfs根目录
./haoop dfs –rm /test/count/SUCCESS //删除/test/count目录里的SUCCESS文件
./haoop dfs –rmr /test/count/output //删除/test/count/output目录
./haoop dfs –mkdir /test/count/input //创建/test/count/input目录
从linux的 共享文件夹取得要分析的文件,上传到 hdfs
./hadoop fs –put /mnt/hgfs/share/phone.txt /test/network
执行代码分析,
./hadoop jar /mnt/hgfs/share/mobile.jar com.wanho.hadoopmobile.PhoneDriver
将产生的结果,传回linux的共享文件夹
./hadoop fs –get /test/network/output1 /mnt/hgfs/share
网站标题:HDFS入门和基本操作
标题来源:http://scyanting.com/article/gisjic.html