hadoop如何实现双色球统计
这篇文章主要介绍hadoop如何实现双色球统计,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!
创新互联为您提适合企业的网站设计 让您的网站在搜索引擎具有高度排名,让您的网站具备超强的网络竞争力!结合企业自身,进行网站设计及把握,最后结合企业文化和具体宗旨等,才能创作出一份性化解决方案。从网站策划到做网站、网站建设, 我们的网页设计师为您提供的解决方案。
1/使用hadoop把双色球相邻的红球进行统计:
测试数据在:http://pan.baidu.com/s/1hq82YrU
import java.io.IOException; import java.text.DateFormat; import java.text.SimpleDateFormat; import java.util.ArrayList; import java.util.Date; import java.util.List; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.conf.Configured; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; import org.apache.hadoop.util.Tool; import org.apache.hadoop.util.ToolRunner; /** *主要过滤出双色球相邻号码 * */ public class Adjacent extends Configured implements Tool { /** * 计数器 * 用于计数各种异常数据 */ enum Counter { LINESKIP, //出错的行 } /** * MAP任务 */ public static class AdjacentMap extends Mapper{ public void map ( LongWritable key, Text value, Context context ) throws IOException, InterruptedException { String line = value.toString(); //读取源数据: 2003001 10 11 12 13 26 28 11 line = line.replaceAll("\t", " ");//过滤掉制表符 try { //数据处理 String [] lineSplit = line.split(" "); if(lineSplit.length != 8){ return ; } //这里不判断最后一个红球,因为最后一个怎么也不会和后面有相邻的球 String out = ""; int next =-1 ; List list = new ArrayList (); for(int i=1;i<7;i++){ int a = Integer.parseInt(lineSplit[i]); int b = 100; if(i<6){ b = Integer.parseInt(lineSplit[i+1]); } if(1==b-a){ if(next == a ){ out = out + " "+ b ; next = b ; }else{ out = "" ; out = out+a+" "+b+" " ; next = b ; } }else{ if(out.equals("")){ }else{ list.add(out); out = "" ; } } } if(list.size()>0){ for(String s :list){ context.write(new Text(s), new Text("1")); //输出 } } } catch ( java.lang.ArrayIndexOutOfBoundsException e ) { context.getCounter(Counter.LINESKIP).increment(1); //出错令计数器+1 return; } } } public static class AdjacentReducer extends Reducer { @Override protected void reduce(Text key, Iterable value, Context context) throws IOException, InterruptedException { int total = 0; for(Text text:value){ total++; } context.write(key,new Text("\t\t\t"+total) ); } } @Override public int run(String[] args) throws Exception { Configuration conf = getConf(); /** 需要注意的部分 **/ Job job = new Job(conf, "adjacent"); //任务名 job.setJarByClass(Adjacent.class); //指定Class FileInputFormat.addInputPath( job, new Path(args[0]) ); //输入路径 FileOutputFormat.setOutputPath( job, new Path(args[1]) ); //输出路径 job.setMapperClass( AdjacentMap.class ); //调用上面Map类作为Map任务代码 job.setReducerClass(AdjacentReducer.class); job.setOutputFormatClass( TextOutputFormat.class ); job.setOutputKeyClass( Text.class ); //指定输出的KEY的格式 job.setOutputValueClass( Text.class ); //指定输出的VALUE的格式 job.waitForCompletion(true); //输出任务完成情况 System.out.println( "任务名称:" + job.getJobName() ); System.out.println( "任务成功:" + ( job.isSuccessful()?"是":"否" ) ); System.out.println( "输入行数:" + job.getCounters().findCounter("org.apache.hadoop.mapred.Task$Counter", "MAP_INPUT_RECORDS").getValue() ); System.out.println( "输出行数:" + job.getCounters().findCounter("org.apache.hadoop.mapred.Task$Counter", "MAP_OUTPUT_RECORDS").getValue() ); System.out.println( "跳过的行:" + job.getCounters().findCounter(Counter.LINESKIP).getValue() ); return job.isSuccessful() ? 0 : 1; } /** * 设置系统说明 * 设置MapReduce任务 */ public static void main(String[] args) throws Exception { //判断参数个数是否正确 //如果无参数运行则显示以作程序说明 if ( args.length != 2 ) { System.err.println(""); System.err.println("Usage: Adjacent < input path > < output path > < name >"); System.err.println("Example: hadoop jar ~/adjacent.jar ./input/ssq03-12.txt ./output/adjacent.txt "); System.err.println("Counter:"); System.err.println("\t"+"LINESKIP"+"\t"+"Lines which are too short"); System.exit(-1); } //记录开始时间 DateFormat formatter = new SimpleDateFormat( "yyyy-MM-dd HH:mm:ss" ); Date start = new Date(); //运行任务 int res = ToolRunner.run(new Configuration(), new Adjacent(), args); //输出任务耗时 Date end = new Date(); float time = (float) (( end.getTime() - start.getTime() ) / 60000.0) ; System.out.println( "任务开始:" + formatter.format(start) ); System.out.println( "任务结束:" + formatter.format(end) ); System.out.println( "任务耗时:" + String.valueOf( time ) + " 分钟" ); System.exit(res); } }
2/对双色球红球出现的次数进行统计:
import java.io.IOException; import java.text.DateFormat; import java.text.SimpleDateFormat; import java.util.ArrayList; import java.util.Date; import java.util.List; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.conf.Configured; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; import org.apache.hadoop.util.Tool; import org.apache.hadoop.util.ToolRunner; /** *对双色球红球出现的次数进行统 * */ public class TotalHong extends Configured implements Tool { /** * 计数器 * 用于计数各种异常数据 */ enum Counter { LINESKIP, //出错的行 } /** * MAP任务 */ public static class AdjacentMap extends Mapper{ public void map ( LongWritable key, Text value, Context context ) throws IOException, InterruptedException { String line = value.toString(); //读取源数据: 2003001 10 11 12 13 26 28 11 line = line.replaceAll("\t", " ");//过滤掉制表符 try { //数据处理 String [] lineSplit = line.split(" "); if(lineSplit.length != 8){ return ; } for(int i=1;i<7;i++){ context.write(new Text(lineSplit[i]), new Text("1")); //输出 } } catch ( java.lang.ArrayIndexOutOfBoundsException e ) { context.getCounter(Counter.LINESKIP).increment(1); //出错令计数器+1 return; } } } public static class AdjacentReducer extends Reducer { @Override protected void reduce(Text key, Iterable value, Context context) throws IOException, InterruptedException { int total = 0; for(Text text:value){ total++; } context.write(key,new Text(total+"") ); } } @Override public int run(String[] args) throws Exception { Configuration conf = getConf(); /** 需要注意的部分 **/ Job job = new Job(conf, "adjacent"); //任务名 job.setJarByClass(TotalHong.class); //指定Class FileInputFormat.addInputPath( job, new Path(args[0]) ); //输入路径 FileOutputFormat.setOutputPath( job, new Path(args[1]) ); //输出路径 job.setMapperClass( AdjacentMap.class ); //调用上面Map类作为Map任务代码 job.setReducerClass(AdjacentReducer.class); job.setOutputFormatClass( TextOutputFormat.class ); job.setOutputKeyClass( Text.class ); //指定输出的KEY的格式 job.setOutputValueClass( Text.class ); //指定输出的VALUE的格式 job.waitForCompletion(true); //输出任务完成情况 System.out.println( "任务名称:" + job.getJobName() ); System.out.println( "任务成功:" + ( job.isSuccessful()?"是":"否" ) ); System.out.println( "输入行数:" + job.getCounters().findCounter("org.apache.hadoop.mapred.Task$Counter", "MAP_INPUT_RECORDS").getValue() ); System.out.println( "输出行数:" + job.getCounters().findCounter("org.apache.hadoop.mapred.Task$Counter", "MAP_OUTPUT_RECORDS").getValue() ); System.out.println( "跳过的行:" + job.getCounters().findCounter(Counter.LINESKIP).getValue() ); return job.isSuccessful() ? 0 : 1; } /** * 设置系统说明 * 设置MapReduce任务 */ public static void main(String[] args) throws Exception { //判断参数个数是否正确 //如果无参数运行则显示以作程序说明 if ( args.length != 2 ) { System.err.println(""); System.err.println("Usage: Adjacent < input path > < output path > < name >"); System.err.println("Example: hadoop jar ~/adjacent.jar ./input/ssq03-12.txt ./output/adjacent.txt "); System.err.println("Counter:"); System.err.println("\t"+"LINESKIP"+"\t"+"Lines which are too short"); System.exit(-1); } //记录开始时间 DateFormat formatter = new SimpleDateFormat( "yyyy-MM-dd HH:mm:ss" ); Date start = new Date(); //运行任务 int res = ToolRunner.run(new Configuration(), new TotalHong(), args); //输出任务耗时 Date end = new Date(); float time = (float) (( end.getTime() - start.getTime() ) / 60000.0) ; System.out.println( "任务开始:" + formatter.format(start) ); System.out.println( "任务结束:" + formatter.format(end) ); System.out.println( "任务耗时:" + String.valueOf( time ) + " 分钟" ); System.exit(res); } }
以上是“hadoop如何实现双色球统计”这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注创新互联行业资讯频道!
新闻名称:hadoop如何实现双色球统计
文章URL:http://scyanting.com/article/gohecd.html