PostgreSQL中BufTableInsert函数有什么作用
本篇内容介绍了“PostgreSQL中BufTableInsert函数有什么作用”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
和顺ssl适用于网站、小程序/APP、API接口等需要进行数据传输应用场景,ssl证书未来市场广阔!成为创新互联公司的ssl证书销售渠道,可以享受市场价格4-6折优惠!如果有意向欢迎电话联系或者加微信:18982081108(备注:SSL证书合作)期待与您的合作!
一、数据结构
BufferDesc
共享缓冲区的共享描述符(状态)数据
/* * Flags for buffer descriptors * buffer描述器标记 * * Note: TAG_VALID essentially means that there is a buffer hashtable * entry associated with the buffer's tag. * 注意:TAG_VALID本质上意味着有一个与缓冲区的标记相关联的缓冲区散列表条目。 */ //buffer header锁定 #define BM_LOCKED (1U << 22) /* buffer header is locked */ //数据需要写入(标记为DIRTY) #define BM_DIRTY (1U << 23) /* data needs writing */ //数据是有效的 #define BM_VALID (1U << 24) /* data is valid */ //已分配buffer tag #define BM_TAG_VALID (1U << 25) /* tag is assigned */ //正在R/W #define BM_IO_IN_PROGRESS (1U << 26) /* read or write in progress */ //上一个I/O出现错误 #define BM_IO_ERROR (1U << 27) /* previous I/O failed */ //开始写则变DIRTY #define BM_JUST_DIRTIED (1U << 28) /* dirtied since write started */ //存在等待sole pin的其他进程 #define BM_PIN_COUNT_WAITER (1U << 29) /* have waiter for sole pin */ //checkpoint发生,必须刷到磁盘上 #define BM_CHECKPOINT_NEEDED (1U << 30) /* must write for checkpoint */ //持久化buffer(不是unlogged或者初始化fork) #define BM_PERMANENT (1U << 31) /* permanent buffer (not unlogged, * or init fork) */ /* * BufferDesc -- shared descriptor/state data for a single shared buffer. * BufferDesc -- 共享缓冲区的共享描述符(状态)数据 * * Note: Buffer header lock (BM_LOCKED flag) must be held to examine or change * the tag, state or wait_backend_pid fields. In general, buffer header lock * is a spinlock which is combined with flags, refcount and usagecount into * single atomic variable. This layout allow us to do some operations in a * single atomic operation, without actually acquiring and releasing spinlock; * for instance, increase or decrease refcount. buf_id field never changes * after initialization, so does not need locking. freeNext is protected by * the buffer_strategy_lock not buffer header lock. The LWLock can take care * of itself. The buffer header lock is *not* used to control access to the * data in the buffer! * 注意:必须持有Buffer header锁(BM_LOCKED标记)才能检查或修改tag/state/wait_backend_pid字段. * 通常来说,buffer header lock是spinlock,它与标记位/参考计数/使用计数组合到单个原子变量中. * 这个布局设计允许我们执行原子操作,而不需要实际获得或者释放spinlock(比如,增加或者减少参考计数). * buf_id字段在初始化后不会出现变化,因此不需要锁定. * freeNext通过buffer_strategy_lock锁而不是buffer header lock保护. * LWLock可以很好的处理自己的状态. * 务请注意的是:buffer header lock不用于控制buffer中的数据访问! * * It's assumed that nobody changes the state field while buffer header lock * is held. Thus buffer header lock holder can do complex updates of the * state variable in single write, simultaneously with lock release (cleaning * BM_LOCKED flag). On the other hand, updating of state without holding * buffer header lock is restricted to CAS, which insure that BM_LOCKED flag * is not set. Atomic increment/decrement, OR/AND etc. are not allowed. * 假定在持有buffer header lock的情况下,没有人改变状态字段. * 持有buffer header lock的进程可以执行在单个写操作中执行复杂的状态变量更新, * 同步的释放锁(清除BM_LOCKED标记). * 换句话说,如果没有持有buffer header lock的状态更新,会受限于CAS, * 这种情况下确保BM_LOCKED没有被设置. * 比如原子的增加/减少(AND/OR)等操作是不允许的. * * An exception is that if we have the buffer pinned, its tag can't change * underneath us, so we can examine the tag without locking the buffer header. * Also, in places we do one-time reads of the flags without bothering to * lock the buffer header; this is generally for situations where we don't * expect the flag bit being tested to be changing. * 一种例外情况是如果我们已有buffer pinned,该buffer的tag不能改变(在本进程之下), * 因此不需要锁定buffer header就可以检查tag了. * 同时,在执行一次性的flags读取时不需要锁定buffer header. * 这种情况通常用于我们不希望正在测试的flag bit将被改变. * * We can't physically remove items from a disk page if another backend has * the buffer pinned. Hence, a backend may need to wait for all other pins * to go away. This is signaled by storing its own PID into * wait_backend_pid and setting flag bit BM_PIN_COUNT_WAITER. At present, * there can be only one such waiter per buffer. * 如果其他进程有buffer pinned,那么进程不能物理的从磁盘页面中删除items. * 因此,后台进程需要等待其他pins清除.这可以通过存储它自己的PID到wait_backend_pid中, * 并设置标记位BM_PIN_COUNT_WAITER. * 目前,每个缓冲区只能由一个等待进程. * * We use this same struct for local buffer headers, but the locks are not * used and not all of the flag bits are useful either. To avoid unnecessary * overhead, manipulations of the state field should be done without actual * atomic operations (i.e. only pg_atomic_read_u32() and * pg_atomic_unlocked_write_u32()). * 本地缓冲头部使用同样的结构,但并不需要使用locks,而且并不是所有的标记位都使用. * 为了避免不必要的负载,状态域的维护不需要实际的原子操作 * (比如只有pg_atomic_read_u32() and pg_atomic_unlocked_write_u32()) * * Be careful to avoid increasing the size of the struct when adding or * reordering members. Keeping it below 64 bytes (the most common CPU * cache line size) is fairly important for performance. * 在增加或者记录成员变量时,小心避免增加结构体的大小. * 保持结构体大小在64字节内(通常的CPU缓存线大小)对于性能是非常重要的. */ typedef struct BufferDesc { //buffer tag BufferTag tag; /* ID of page contained in buffer */ //buffer索引编号(0开始),指向相应的buffer pool slot int buf_id; /* buffer's index number (from 0) */ /* state of the tag, containing flags, refcount and usagecount */ //tag状态,包括flags/refcount和usagecount pg_atomic_uint32 state; //pin-count等待进程ID int wait_backend_pid; /* backend PID of pin-count waiter */ //空闲链表链中下一个空闲的buffer int freeNext; /* link in freelist chain */ //缓冲区内容锁 LWLock content_lock; /* to lock access to buffer contents */ } BufferDesc;
BufferTag
Buffer tag标记了buffer存储的是磁盘中哪个block
/* * Buffer tag identifies which disk block the buffer contains. * Buffer tag标记了buffer存储的是磁盘中哪个block * * Note: the BufferTag data must be sufficient to determine where to write the * block, without reference to pg_class or pg_tablespace entries. It's * possible that the backend flushing the buffer doesn't even believe the * relation is visible yet (its xact may have started before the xact that * created the rel). The storage manager must be able to cope anyway. * 注意:BufferTag必须足以确定如何写block而不需要参照pg_class或者pg_tablespace数据字典信息. * 有可能后台进程在刷新缓冲区的时候深圳不相信关系是可见的(事务可能在创建rel的事务之前). * 存储管理器必须可以处理这些事情. * * Note: if there's any pad bytes in the struct, INIT_BUFFERTAG will have * to be fixed to zero them, since this struct is used as a hash key. * 注意:如果在结构体中有填充的字节,INIT_BUFFERTAG必须将它们固定为零,因为这个结构体用作散列键. */ typedef struct buftag { //物理relation标识符 RelFileNode rnode; /* physical relation identifier */ ForkNumber forkNum; //相对于relation起始的块号 BlockNumber blockNum; /* blknum relative to begin of reln */ } BufferTag;
HTAB
哈希表的顶层控制结构.
/* * Top control structure for a hashtable --- in a shared table, each backend * has its own copy (OK since no fields change at runtime) * 哈希表的顶层控制结构. * 在这个共享哈希表中,每一个后台进程都有自己的拷贝 * (之所以没有问题是因为fork出来后,在运行期没有字段会变化) */ struct HTAB { //指向共享的控制信息 HASHHDR *hctl; /* => shared control information */ //段开始目录 HASHSEGMENT *dir; /* directory of segment starts */ //哈希函数 HashValueFunc hash; /* hash function */ //哈希键比较函数 HashCompareFunc match; /* key comparison function */ //哈希键拷贝函数 HashCopyFunc keycopy; /* key copying function */ //内存分配器 HashAllocFunc alloc; /* memory allocator */ //内存上下文 MemoryContext hcxt; /* memory context if default allocator used */ //表名(用于错误信息) char *tabname; /* table name (for error messages) */ //如在共享内存中,则为T bool isshared; /* true if table is in shared memory */ //如为T,则固定大小不能扩展 bool isfixed; /* if true, don't enlarge */ /* freezing a shared table isn't allowed, so we can keep state here */ //不允许冻结共享表,因此这里会保存相关状态 bool frozen; /* true = no more inserts allowed */ /* We keep local copies of these fixed values to reduce contention */ //保存这些固定值的本地拷贝,以减少冲突 //哈希键长度(以字节为单位) Size keysize; /* hash key length in bytes */ //段大小,必须为2的幂 long ssize; /* segment size --- must be power of 2 */ //段偏移,ssize的对数 int sshift; /* segment shift = log2(ssize) */ }; /* * Header structure for a hash table --- contains all changeable info * 哈希表的头部结构 -- 存储所有可变信息 * * In a shared-memory hash table, the HASHHDR is in shared memory, while * each backend has a local HTAB struct. For a non-shared table, there isn't * any functional difference between HASHHDR and HTAB, but we separate them * anyway to share code between shared and non-shared tables. * 在共享内存哈希表中,HASHHDR位于共享内存中,每一个后台进程都有一个本地HTAB结构. * 对于非共享哈希表,HASHHDR和HTAB没有任何功能性的不同, * 但无论如何,我们还是把它们区分为共享和非共享表. */ struct HASHHDR { /* * The freelist can become a point of contention in high-concurrency hash * tables, so we use an array of freelists, each with its own mutex and * nentries count, instead of just a single one. Although the freelists * normally operate independently, we will scavenge entries from freelists * other than a hashcode's default freelist when necessary. * 在高并发的哈希表中,空闲链表会成为竞争热点,因此我们使用空闲链表数组, * 数组中的每一个元素都有自己的mutex和条目统计,而不是使用一个. * * If the hash table is not partitioned, only freeList[0] is used and its * spinlock is not used at all; callers' locking is assumed sufficient. * 如果哈希表没有分区,那么只有freelist[0]元素是有用的,自旋锁没有任何用处; * 调用者锁定被认为已足够OK. */ FreeListData freeList[NUM_FREELISTS]; /* These fields can change, but not in a partitioned table */ //这些域字段可以改变,但不适用于分区表 /* Also, dsize can't change in a shared table, even if unpartitioned */ //同时,就算是非分区表,共享表的dsize也不能改变 //目录大小 long dsize; /* directory size */ //已分配的段大小(<= dbsize) long nsegs; /* number of allocated segments (<= dsize) */ //正在使用的最大桶ID uint32 max_bucket; /* ID of maximum bucket in use */ //进入整个哈希表的模掩码 uint32 high_mask; /* mask to modulo into entire table */ //进入低于半个哈希表的模掩码 uint32 low_mask; /* mask to modulo into lower half of table */ /* These fields are fixed at hashtable creation */ //下面这些字段在哈希表创建时已固定 //哈希键大小(以字节为单位) Size keysize; /* hash key length in bytes */ //所有用户元素大小(以字节为单位) Size entrysize; /* total user element size in bytes */ //分区个数(2的幂),或者为0 long num_partitions; /* # partitions (must be power of 2), or 0 */ //目标的填充因子 long ffactor; /* target fill factor */ //如目录是固定大小,则该值为dsize的上限值 long max_dsize; /* 'dsize' limit if directory is fixed size */ //段大小,必须是2的幂 long ssize; /* segment size --- must be power of 2 */ //端偏移,ssize的对数 int sshift; /* segment shift = log2(ssize) */ //一次性分配的条目个数 int nelem_alloc; /* number of entries to allocate at once */ #ifdef HASH_STATISTICS /* * Count statistics here. NB: stats code doesn't bother with mutex, so * counts could be corrupted a bit in a partitioned table. * 统计信息. * 注意:统计相关的代码不会影响mutex,因此对于分区表,统计可能有一点点问题 */ long accesses; long collisions; #endif }; /* * Per-freelist data. * 空闲链表数据. * * In a partitioned hash table, each freelist is associated with a specific * set of hashcodes, as determined by the FREELIST_IDX() macro below. * nentries tracks the number of live hashtable entries having those hashcodes * (NOT the number of entries in the freelist, as you might expect). * 在一个分区哈希表中,每一个空闲链表与特定的hashcodes集合相关,通过下面的FREELIST_IDX()宏进行定义. * nentries跟踪有这些hashcodes的仍存活的hashtable条目个数. * (注意不要搞错,不是空闲的条目个数) * * The coverage of a freelist might be more or less than one partition, so it * needs its own lock rather than relying on caller locking. Relying on that * wouldn't work even if the coverage was the same, because of the occasional * need to "borrow" entries from another freelist; see get_hash_entry(). * 空闲链表的覆盖范围可能比一个分区多或少,因此需要自己的锁而不能仅仅依赖调用者的锁. * 依赖调用者锁在覆盖面一样的情况下也不会起效,因为偶尔需要从另一个自由列表“借用”条目,详细参见get_hash_entry() * * Using an array of FreeListData instead of separate arrays of mutexes, * nentries and freeLists helps to reduce sharing of cache lines between * different mutexes. * 使用FreeListData数组而不是一个独立的mutexes,nentries和freelists数组有助于减少不同mutexes之间的缓存线共享. */ typedef struct { //该空闲链表的自旋锁 slock_t mutex; /* spinlock for this freelist */ //相关桶中的条目个数 long nentries; /* number of entries in associated buckets */ //空闲元素链 HASHELEMENT *freeList; /* chain of free elements */ } FreeListData; /* * HASHELEMENT is the private part of a hashtable entry. The caller's data * follows the HASHELEMENT structure (on a MAXALIGN'd boundary). The hash key * is expected to be at the start of the caller's hash entry data structure. * HASHELEMENT是哈希表条目的私有部分. * 调用者的数据按照HASHELEMENT结构组织(位于MAXALIGN的边界). * 哈希键应位于调用者hash条目数据结构的开始位置. */ typedef struct HASHELEMENT { //链接到相同桶中的下一个条目 struct HASHELEMENT *link; /* link to next entry in same bucket */ //该条目的哈希函数结果 uint32 hashvalue; /* hash function result for this entry */ } HASHELEMENT; /* Hash table header struct is an opaque type known only within dynahash.c */ //哈希表头部结构,非透明类型,用于dynahash.c typedef struct HASHHDR HASHHDR; /* Hash table control struct is an opaque type known only within dynahash.c */ //哈希表控制结构,非透明类型,用于dynahash.c typedef struct HTAB HTAB; /* Parameter data structure for hash_create */ //hash_create使用的参数数据结构 /* Only those fields indicated by hash_flags need be set */ //根据hash_flags标记设置相应的字段 typedef struct HASHCTL { //分区个数(必须是2的幂) long num_partitions; /* # partitions (must be power of 2) */ //段大小 long ssize; /* segment size */ //初始化目录大小 long dsize; /* (initial) directory size */ //dsize上限 long max_dsize; /* limit to dsize if dir size is limited */ //填充因子 long ffactor; /* fill factor */ //哈希键大小(字节为单位) Size keysize; /* hash key length in bytes */ //参见上述数据结构注释 Size entrysize; /* total user element size in bytes */ // HashValueFunc hash; /* hash function */ HashCompareFunc match; /* key comparison function */ HashCopyFunc keycopy; /* key copying function */ HashAllocFunc alloc; /* memory allocator */ MemoryContext hcxt; /* memory context to use for allocations */ //共享内存中的哈希头部结构地址 HASHHDR *hctl; /* location of header in shared mem */ } HASHCTL; /* A hash bucket is a linked list of HASHELEMENTs */ //哈希桶是HASHELEMENTs链表 typedef HASHELEMENT *HASHBUCKET; /* A hash segment is an array of bucket headers */ //hash segment是桶数组 typedef HASHBUCKET *HASHSEGMENT; /* * Hash functions must have this signature. * Hash函数必须有它自己的标识 */ typedef uint32 (*HashValueFunc) (const void *key, Size keysize); /* * Key comparison functions must have this signature. Comparison functions * return zero for match, nonzero for no match. (The comparison function * definition is designed to allow memcmp() and strncmp() to be used directly * as key comparison functions.) * 哈希键对比函数必须有自己的标识. * 如匹配则对比函数返回0,不匹配返回非0. * (对比函数定义被设计为允许在对比键值时可直接使用memcmp()和strncmp()) */ typedef int (*HashCompareFunc) (const void *key1, const void *key2, Size keysize); /* * Key copying functions must have this signature. The return value is not * used. (The definition is set up to allow memcpy() and strlcpy() to be * used directly.) * 键拷贝函数必须有自己的标识. * 返回值无用. */ typedef void *(*HashCopyFunc) (void *dest, const void *src, Size keysize); /* * Space allocation function for a hashtable --- designed to match malloc(). * Note: there is no free function API; can't destroy a hashtable unless you * use the default allocator. * 哈希表的恐惧分配函数 -- 被设计为与malloc()函数匹配. * 注意:这里没有释放函数API;不能销毁哈希表,除非使用默认的分配器. */ typedef void *(*HashAllocFunc) (Size request);
BufferLookupEnt
/* entry for buffer lookup hashtable */ //检索hash表的条目 typedef struct { //磁盘page的tag BufferTag key; /* Tag of a disk page */ //相关联的buffer ID int id; /* Associated buffer ID */ } BufferLookupEnt;
二、源码解读
BufTableInsert源码很简单,重点是需要理解HTAB数据结构,即全局变量SharedBufHash的数据结构.
/* * BufTableInsert * Insert a hashtable entry for given tag and buffer ID, * unless an entry already exists for that tag * BufTableInsert * 给定tag和buffer ID,插入到哈希表中,如该tag相应的条目已存在,则不处理. * * Returns -1 on successful insertion. If a conflicting entry exists * already, returns the buffer ID in that entry. * 如成功插入,则返回-1.如冲突的条目已存在,则返回条目的buffer ID. * * Caller must hold exclusive lock on BufMappingLock for tag's partition * 调用者必须持有tag分区BufMappingLock独占锁. */ int BufTableInsert(BufferTag *tagPtr, uint32 hashcode, int buf_id) { BufferLookupEnt *result; bool found; Assert(buf_id >= 0); /* -1 is reserved for not-in-table */ Assert(tagPtr->blockNum != P_NEW); /* invalid tag */ //static HTAB *SharedBufHash; result = (BufferLookupEnt *) hash_search_with_hash_value(SharedBufHash, (void *) tagPtr, hashcode, HASH_ENTER, &found); if (found) /* found something already in the table */ return result->id; result->id = buf_id; return -1; }
三、跟踪分析
测试脚本,查询数据表:
10:01:54 (xdb@[local]:5432)testdb=# select * from t1 limit 10;
启动gdb,设置断点
(gdb) (gdb) b BufTableInsert Breakpoint 1 at 0x875c92: file buf_table.c, line 125. (gdb) c Continuing. Breakpoint 1, BufTableInsert (tagPtr=0x7fff0cba0ef0, hashcode=1398580903, buf_id=101) at buf_table.c:125 125 Assert(buf_id >= 0); /* -1 is reserved for not-in-table */ (gdb)
输入参数
tagPtr-BufferTag结构体
hashcode=1398580903,
buf_id=101
(gdb) p *tagPtr $1 = {rnode = {spcNode = 1663, dbNode = 16402, relNode = 51439}, forkNum = MAIN_FORKNUM, blockNum = 0}
调用hash_search_with_hash_value,重点考察SharedBufHash(HTAB指针)
(gdb) n 129 hash_search_with_hash_value(SharedBufHash,
SharedBufHash
(gdb) p *SharedBufHash $2 = {hctl = 0x7f5489004380, dir = 0x7f54890046d8, hash = 0xa3bf74, match = 0x4791a0 , keycopy = 0x479690 , alloc = 0x89250b , hcxt = 0x0, tabname = 0x1fbf1d8 "Shared Buffer Lookup Table", isshared = true, isfixed = false, frozen = false, keysize = 20, ssize = 256, sshift = 8} (gdb)
SharedBufHash->hctl,HASHHDR结构体
freeList是一个数组
num_partitions是分区个数,默认为128
(gdb) p *SharedBufHash->hctl $3 = {freeList = {{mutex = 0 '\000', nentries = 3, freeList = 0x7f5489119700}, {mutex = 0 '\000', nentries = 2, freeList = 0x7f548912d828}, {mutex = 0 '\000', nentries = 4, freeList = 0x7f54891418d8}, {mutex = 0 '\000', nentries = 3, freeList = 0x7f5489155a00}, {mutex = 0 '\000', nentries = 8, freeList = 0x7f5489169a38}, { mutex = 0 '\000', nentries = 3, freeList = 0x7f548917dc00}, {mutex = 0 '\000', nentries = 5, freeList = 0x7f5489191cb0}, {mutex = 0 '\000', nentries = 3, freeList = 0x7f54891a5e00}, {mutex = 0 '\000', nentries = 1, freeList = 0x7f54891b9f50}, {mutex = 0 '\000', nentries = 3, freeList = 0x7f54891ce000}, { mutex = 0 '\000', nentries = 3, freeList = 0x7f54891e2100}, {mutex = 0 '\000', nentries = 5, freeList = 0x7f54891f61b0}, {mutex = 0 '\000', nentries = 4, freeList = 0x7f548920a2d8}, {mutex = 0 '\000', nentries = 2, freeList = 0x7f548921e428}, {mutex = 0 '\000', nentries = 2, freeList = 0x7f5489232528}, { mutex = 0 '\000', nentries = 4, freeList = 0x7f54892465d8}, {mutex = 0 '\000', nentries = 3, freeList = 0x7f548925a700}, {mutex = 0 '\000', nentries = 3, freeList = 0x7f548926e800}, {mutex = 0 '\000', nentries = 5, freeList = 0x7f54892828b0}, {mutex = 0 '\000', nentries = 2, freeList = 0x7f5489296a28}, { mutex = 0 '\000', nentries = 4, freeList = 0x7f54892aaad8}, {mutex = 0 '\000', nentries = 4, freeList = 0x7f54892bebd8}, {mutex = 0 '\000', nentries = 5, freeList = 0x7f54892d2cb0}, {mutex = 0 '\000', nentries = 0, freeList = 0x7f54892e6e78}, {mutex = 0 '\000', nentries = 2, freeList = 0x7f54892faf28}, { mutex = 0 '\000', nentries = 3, freeList = 0x7f548930f000}, {mutex = 0 '\000', nentries = 4, freeList = 0x7f54893230d8}, {mutex = 0 '\000', nentries = 4, freeList = 0x7f54893371d8}, {mutex = 0 '\000', nentries = 2, freeList = 0x7f548934b328}, {mutex = 0 '\000', nentries = 1, freeList = 0x7f548935f450}, { mutex = 0 '\000', nentries = 4, freeList = 0x7f54893734d8}, {mutex = 0 '\000', nentries = 3, freeList = 0x7f5489387600}}, dsize = 512, nsegs = 512, max_bucket = 131071, high_mask = 262143, low_mask = 131071, keysize = 20, entrysize = 24, num_partitions = 128, ffactor = 1, max_dsize = 512, ssize = 256, sshift = 8, nelem_alloc = 51} (gdb) (gdb) p *SharedBufHash->hctl->freeList[0].freeList $4 = {link = 0x7f54891196d8, hashvalue = 0} (gdb) p *SharedBufHash->hctl->freeList[0].freeList.link $5 = {link = 0x7f54891196b0, hashvalue = 0} (gdb)
SharedBufHash->dir,段开始目录
(gdb) p *SharedBufHash->dir $6 = (HASHSEGMENT) 0x7f5489005700 (gdb) p **SharedBufHash->dir $7 = (HASHBUCKET) 0x0 (gdb) p *SharedBufHash->dir[0] $8 = (HASHBUCKET) 0x0 (gdb) p *SharedBufHash->dir[1] $9 = (HASHBUCKET) 0x0 (gdb)
哈希函数为tag_hash
哈希键比较函数是memcmp
@plt
哈希键拷贝函数是memcpy
@plt
内存分配器是ShmemAllocNoError
内存上下文为NULL
表名是Shared Buffer Lookup Table
共享内存(isshared=T)
非固定/非冻结/哈希键长度为20B/段大小为256/段偏移为8
执行hash_search_with_hash_value,查看相关信息
(gdb) n 128 result = (BufferLookupEnt *) (gdb) 135 if (found) /* found something already in the table */ (gdb) p *SharedBufHash $10 = {hctl = 0x7f5489004380, dir = 0x7f54890046d8, hash = 0xa3bf74, match = 0x4791a0 , keycopy = 0x479690 , alloc = 0x89250b , hcxt = 0x0, tabname = 0x1fbf1d8 "Shared Buffer Lookup Table", isshared = true, isfixed = false, frozen = false, keysize = 20, ssize = 256, sshift = 8} (gdb) p *SharedBufHash->hctl $11 = {freeList = {{mutex = 0 '\000', nentries = 3, freeList = 0x7f5489119700}, {mutex = 0 '\000', nentries = 2, freeList = 0x7f548912d828}, {mutex = 0 '\000', nentries = 4, freeList = 0x7f54891418d8}, {mutex = 0 '\000', nentries = 3, freeList = 0x7f5489155a00}, {mutex = 0 '\000', nentries = 8, freeList = 0x7f5489169a38}, { mutex = 0 '\000', nentries = 3, freeList = 0x7f548917dc00}, {mutex = 0 '\000', nentries = 5, freeList = 0x7f5489191cb0}, {mutex = 0 '\000', nentries = 4, freeList = 0x7f54891a5dd8}, {mutex = 0 '\000', nentries = 1, freeList = 0x7f54891b9f50}, {mutex = 0 '\000', nentries = 3, freeList = 0x7f54891ce000}, { mutex = 0 '\000', nentries = 3, freeList = 0x7f54891e2100}, {mutex = 0 '\000', nentries = 5, freeList = 0x7f54891f61b0}, {mutex = 0 '\000', nentries = 4, freeList = 0x7f548920a2d8}, {mutex = 0 '\000', nentries = 2, freeList = 0x7f548921e428}, {mutex = 0 '\000', nentries = 2, freeList = 0x7f5489232528}, { mutex = 0 '\000', nentries = 4, freeList = 0x7f54892465d8}, {mutex = 0 '\000', nentries = 3, freeList = 0x7f548925a700}, {mutex = 0 '\000', nentries = 3, freeList = 0x7f548926e800}, {mutex = 0 '\000', nentries = 5, freeList = 0x7f54892828b0}, {mutex = 0 '\000', nentries = 2, freeList = 0x7f5489296a28}, { mutex = 0 '\000', nentries = 4, freeList = 0x7f54892aaad8}, {mutex = 0 '\000', nentries = 4, freeList = 0x7f54892bebd8}, {mutex = 0 '\000', nentries = 5, freeList = 0x7f54892d2cb0}, {mutex = 0 '\000', nentries = 0, freeList = 0x7f54892e6e78}, {mutex = 0 '\000', nentries = 2, freeList = 0x7f54892faf28}, { mutex = 0 '\000', nentries = 3, freeList = 0x7f548930f000}, {mutex = 0 '\000', nentries = 4, freeList = 0x7f54893230d8}, {mutex = 0 '\000', nentries = 4, freeList = 0x7f54893371d8}, {mutex = 0 '\000', nentries = 2, freeList = 0x7f548934b328}, {mutex = 0 '\000', nentries = 1, freeList = 0x7f548935f450}, { mutex = 0 '\000', nentries = 4, freeList = 0x7f54893734d8}, {mutex = 0 '\000', nentries = 3, freeList = 0x7f5489387600}}, dsize = 512, nsegs = 512, max_bucket = 131071, high_mask = 262143, low_mask = 131071, keysize = 20, entrysize = 24, num_partitions = 128, ffactor = 1, max_dsize = 512, ssize = 256, sshift = 8, nelem_alloc = 51} (gdb) p **SharedBufHash->dir $12 = (HASHBUCKET) 0x0 (gdb) p *SharedBufHash->dir $13 = (HASHSEGMENT) 0x7f5489005700 (gdb) p result $14 = (BufferLookupEnt *) 0x7f54891a5e10 (gdb) p *result $15 = {key = {rnode = {spcNode = 1663, dbNode = 16402, relNode = 51439}, forkNum = MAIN_FORKNUM, blockNum = 0}, id = 0} (gdb) p found $16 = false
完成调用,返回
(gdb) n 138 result->id = buf_id; (gdb) 140 return -1; (gdb) 141 } (gdb) BufferAlloc (smgr=0x204f430, relpersistence=112 'p', forkNum=MAIN_FORKNUM, blockNum=0, strategy=0x0, foundPtr=0x7fff0cba0fa3) at bufmgr.c:1216 1216 if (buf_id >= 0) (gdb)
“PostgreSQL中BufTableInsert函数有什么作用”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注创新互联网站,小编将为大家输出更多高质量的实用文章!
文章名称:PostgreSQL中BufTableInsert函数有什么作用
分享地址:http://scyanting.com/article/gpdjop.html