python阈值函数,python统计大于阈值的个数
Python 多进程内存占用问题
当我们有一个很长很长的任务队列(mission_list)和阈值对应的一个处理函数(missionFunction)时,我们一般采用如下的方式进行处理:
专注于为中小企业提供成都网站建设、网站制作服务,电脑端+手机端+微信端的三站合一,更高效的管理,为中小企业仁化免费做网站提供优质的服务。我们立足成都,凝聚了一批互联网行业人才,有力地推动了成百上千企业的稳健成长,帮助中小企业通过网站建设实现规模扩充和转变。
但是,如果这任务列表很长很长,处理函数很复杂(占用cpu)时,单核往往需要很长的时间进行处理,此时,Multiprocess便可以极大的提高我们程序的运行速度,相关内容请借鉴 multiprocessing --- 基于进程的并行 — Python 3.10.4 文档。
以上这种场景下,推荐大家采用最简单的进程池+map的方法进行处理,标准的写法, chunksize要借鉴官方的说法,最好大一点 :
但是!!!! 如果我们的任务列表非常的长,这会导致多进程还没跑起来之前,内存已经撑爆了,任务自然没法完成,此时我们有几种办法进行优化:
进程的启动方法有三种,可参考官方文档:
[图片上传失败...(image-48cd3c-1650511153989)]
在linux环境下,使用forkserver可以节省很多的内存空间, 因为进程启动的是一个服务,不会把主进程的数据全部复制
采用imap会极大的节省空间,它返回的是一个迭代器,也就是结果列表:
但注意,以上写法中,你写的结果迭代部分必须写在with下面。或者采用另一种写法:
还有最后一种,当你的mission list实在太大了,导致你在生成 mission list的时候已经把内存撑爆了,这个时候就得优化 mission_list了,如果你的mission_list是通过一个for循环生成的,你可以使用yield字段,将其封装为一个迭代器,传入进程池:
这样子,我们就封装好了mission_list,它是一个可迭代对象,在取数据的时候才会将数据拉到内存
我在项目中结合了后两种方法,原本256G的内存都不够用,但在修改后内存只占用了不到10G。希望能够帮助到你
3种python3的canny边缘检测之静态,可调节和自适应
先看高级版的python3的canny的自适应边缘检测:
内容:
1 canny的边缘检测的介绍。
2 三种方法的canny的边缘检测,由浅入深地介绍:固定值的静态,可自调节的,自适应的。
说明:
1 环境:python3.8、opencv4.5.3和matplotlib3.4.3。
2 图片:来自品阅网正版免费图库。
3 实现自适应阈值的canny边缘检测的参考代码和文章:
上述的代码,本机均有报错,故对代码进行修改,注释和运行。
初级canny:
1 介绍:opencv中给出了canny边缘检测的接口,直接调用:
即可得到边缘检测的结果ret,其中,t1,t2是需要人为设置的阈值。
2 python的opencv的一行代码即可实现边缘检测。
3 Canny函数及使用:
4 Canny边缘检测流程:
去噪 -- 梯度 -- 非极大值抑制 -- 滞后阈值
5 代码:
6 操作和过程:
7 原图:
8 疑问:
ret = cv2.canny(img,t1,t2),其中,t1,t2是需要人为设置的阈值,一般人怎么知道具体数值是多少,才是最佳的呀?所以,这是它的缺点。
中级canny:
1 中级canny,就是可调节的阈值,找到最佳的canny边缘检测效果。
2 采用cv2.createTrackbar来调节阈值。
3 代码:
4 操作和效果:
5 原图:
高级canny:
1 自适应canny的算法:
ret = cv2.canny(img,t1,t2)
即算法在运行过程中能够自适应地找到较佳的分割阈值t1,t2。
2 文件结构:
3 main.py代码:
4 dog.py代码:
5 bilateralfilt.py代码:
6 原图:
7 效果图:本文第一个gif图,此处省略。
小结:
1 本文由浅入深,总结的很好,适合收藏。
2 对于理解python的opencv的canny的边缘检测,很有帮助。
3 本文高级版canny自适应的算法参考2篇文章,虽然我进行代码的删除,注释,修改,优化等操作,故我不标注原创,对原作者表达敬意。
4 自己总结和整理,分享出来,希望对大家有帮助。
python 使用余弦相似度计算之后如何设置一个阈值呢
找一个验证集合,遍历可能的阈值,计算评价指标,确定最佳阈值
分享名称:python阈值函数,python统计大于阈值的个数
地址分享:http://scyanting.com/article/hchehe.html