python库函数解读,python语法库
python中ord()函数与input的区别
区别在于ord()函数是Python中的一个库函数,用于从给定字符值中获取数字值,它接受一个字符并返回一个整数,即用于将字符转换为整数,即用于获取ASCII给定字符的值,input()函数在python中是代表输入的意思,简单的理解就是用户通过键盘输入的内容,python程序可以接收到。这是人机交互的重要窗口。默认是按文本方式处理的,如果要输入的是数值,需要用int()或者float()函数处理下。
10年的桓仁网站建设经验,针对设计、前端、开发、售后、文案、推广等六对一服务,响应快,48小时及时工作处理。成都营销网站建设的优势是能够根据用户设备显示端的尺寸不同,自动调整桓仁建站的显示方式,使网站能够适用不同显示终端,在浏览器中调整网站的宽度,无论在任何一种浏览器上浏览网站,都能展现优雅布局与设计,从而大程度地提升浏览体验。创新互联从事“桓仁网站设计”,“桓仁网站推广”以来,每个客户项目都认真落实执行。
Python内置turtle海龟库函数讲解1
1、返回原点
home()
无参数,直接调用
2、画圆
circle(radius,extent,steps)
参数:radius 指定圆的半径,extent 绘制圆弧的夹角,steps 多边形变数不给默认值
3、画点
dot(size,color)
参数:size绘制点的直径值,color点的色彩
4、印章
stamp()
无参数
5、清除印章
clearstamp(stampid)清楚印章
clearstamps(n=None) 清楚多个印章
参数:stampid是调用stamp函数返回的ID值,n为None则删除全部印章,如果n0则删除前n个印章,n
一文读懂Python 高阶函数
将函数作为参数传入,这样的函数称为高阶函数。 函数式编程就是指这种高度抽象的编程范式。
变量可以指向函数,函数的参数能接收变量,那么一个函数就可以接收另一个函数作为参数,这种函数就称之为高阶函数。如下所示:
map(fun, lst),将传入的函数变量func作用到lst变量的每个元素中,并将结果组成新的列表返回。
定义一个匿名函数并调用,定义格式如--lambda arg1,arg2…:表达式
reduce把一个函数作用在一个序列[x1, x2, x3, …]上,这个函数必须接收两个参数,reduce把结果继续和序列的下一个元素做累积计算。
filter() 函数用于过滤序列,过滤掉不符合条件的元素,返回由符合条件元素组成的新列表。
闭包的定义?闭包本质上就是一个函数
如何创建闭包?
如何使用闭包?典型的使用场景是装饰器的使用。
global与nonlocal的区别:
简单的使用如下:
偏函数主要辅助原函数,作用其实和原函数差不多,不同的是,我们要多次调用原函数的时候,有些参数,我们需要多次手动的去提供值。
而偏函数便可简化这些操作,减少函数调用,主要是将一个或多个参数预先赋值,以便函数能用更少的参数进行调用。
我们再来看一下偏函数的定义:
类func = functools.partial(func, *args, **keywords)
我们可以看到,partial 一定接受三个参数,从之前的例子,我们也能大概知道这三个参数的作用。简单介绍下:
总结
本文是对Python 高阶函数相关知识的分享,主题内容总结如下:
Python内置turtle海龟库函数讲解 4
一、海龟状态函数
1、显示海龟
showturtle()或st()
无参数直接调用
2、隐藏海龟
hideturtle()或ht()
无参数直接调用
3、返回海龟的状态(True或False)
isvisible()
无参数直接调用
二、外观函数
1、改变海龟的外形或返回当前海龟形状
shape(name)
默认的参数是:"arrow", "turtle", "circle", "square", "triangle", "classic"。
2、设置海龟尺寸模式
resizemode(rmode)
参数:默认值("auto", "user", "noresize")
3、调整海龟的大小或返回当前大小参数值
shapesize(wid,len,outline)或turtle.sieze(wid,len,outline)
参数 wid 正数 len 正数 outline正数
4、设置或返回当前的剪切因子
shearfactor()
参数: shear 实数
5、设置倾角
settiltangle(angle)
参数:angle角度和海龟朝向不同
6、设置海龟与朝向的夹角
tilt(angle)
Python|range函数用法完全解读
迭代器是 23 种设计模式中最常用的一种(之一),在 Python 中随处可见它的身影,我们经常用到它,但是却不一定意识到它的存在。在关于迭代器的系列文章中(链接见文末),我至少提到了 23 种生成迭代器的方法。有些方法是专门用于生成迭代器的,还有一些方法则是为了解决别的问题而“暗中”使用到迭代器。
在系统学习迭代器之前,我一直以为 range() 方法也是用于生成迭代器的,现在却突然发现,它生成的只是可迭代对象,而并不是迭代器! (PS:Python2 中 range() 生成的是列表,本文基于Python3,生成的是可迭代对象)
于是,我有了这样的疑问:为什么 range() 不生成迭代器呢?在查找答案的过程中,我发现自己对 range 类型的认识存在一些误区。因此,本文将和大家全面地认识一下 range ,期待与你共同学习进步。
1、range() 是什么?
它的语法:range(start, stop [,step]) ;start 指的是计数起始值,默认是 0;stop 指的是计数结束值,但不包括 stop ;step 是步长,默认为 1,不可以为 0 。range() 方法生成一段左闭右开的整数范围。
对于 range() 函数,有几个注意点:(1)它表示的是左闭右开区间;(2)它接收的参数必须是整数,可以是负数,但不能是浮点数等其它类型;(3)它是不可变的序列类型,可以进行判断元素、查找元素、切片等操作,但不能修改元素;(4)它是可迭代对象,却不是迭代器。
2、 为什么range()不生产迭代器?
可以获得迭代器的内置方法很多,例如 zip() 、enumerate()、map()、filter() 和 reversed() 等等,但是像 range() 这样仅仅得到的是可迭代对象的方法就绝无仅有了(若有反例,欢迎告知)。这就是我存在知识误区的地方。
在 for-循环 遍历时,可迭代对象与迭代器的性能是一样的,即它们都是惰性求值的,在空间复杂度与时间复杂度上并无差异。我曾概括过两者的差别是“一同两不同”:相同的是都可惰性迭代,不同的是可迭代对象不支持自遍历(即next()方法),而迭代器本身不支持切片(即 getitem () 方法)。
虽然有这些差别,但很难得出结论说它们哪个更优。现在微妙之处就在于,为什么给 5 种内置方法都设计了迭代器,偏偏给 range() 方法设计的就是可迭代对象呢?把它们都统一起来,不是更好么?
事实上,Pyhton 为了规范性就干过不少这种事,例如,Python2 中有 range() 和 xrange() 两种方法,而 Python3 就干掉了其中一种,还用了“李代桃僵”法。为什么不更规范点,令 range() 生成的是迭代器呢?
关于这个问题,我没找到官方解释,以下纯属个人观点 。
zip() 等方法都需要接收确定的可迭代对象的参数,是对它们的一种再加工的过程,因此也希望马上产出确定的结果来,所以 Python 开发者就设计了这个结果是迭代器。这样还有一个好处,即当作为参数的可迭代对象发生变化的时候,作为结果的迭代器因为是消耗型的,不会被错误地使用。
而 range() 方法就不同了,它接收的参数不是可迭代对象,本身是一种初次加工的过程,所以设计它为可迭代对象,既可以直接使用,也可以用于其它再加工用途。例如,zip() 等方法就完全可以接收 range 类型的参数。
也就是说,range() 方法作为一种初级生产者,它生产的原料本身就有很大用途,早早把它变为迭代器的话,无疑是一种画蛇添足的行为。
对于这种解读,你是否觉得有道理呢?欢迎就这个话题与我探讨。
3、range 类型是什么?
以上是我对“为什么range()不产生迭代器”的一种解答。顺着这个思路,我研究了一下它产生的 range 对象,一研究就发现,这个 range 对象也并不简单。
首先奇怪的一点就是,它竟然是不可变序列!我从未注意过这一点。虽然说,我从未想过修改 range() 的值,但这一不可修改的特性还是令我惊讶。
翻看文档,官方是这样明确划分的——有三种基本的序列类型:列表、元组和范围(range)对象。(There are three basic sequence types: lists, tuples, and range objects.)
这我倒一直没注意,原来 range 类型居然跟列表和元组是一样地位的基础序列!我一直记挂着字符串是不可变的序列类型,不曾想,这里还有一位不可变的序列类型呢。
那 range 序列跟其它序列类型有什么差异呢?
普通序列都支持的操作有 12 种。range 序列只支持其中的 10 种,不支持进行加法拼接与乘法重复。
那么问题来了:同样是不可变序列,为什么字符串和元组就支持上述两种操作,而偏偏 range 序列不支持呢?虽然不能直接修改不可变序列,但我们可以将它们拷贝到新的序列上进行操作啊,为何 range 对象连这都不支持呢?
且看官方文档的解释:
…due to the fact that range objects can only represent sequences that follow a strict pattern and repetition and concatenation will usually violate that pattern.
原因是 range 对象仅仅表示一个遵循着严格模式的序列,而重复与拼接通常会破坏这种模式…
问题的关键就在于 range 序列的 pattern,仔细想想,其实它表示的就是一个等差数列啊(喵,高中数学知识没忘…),拼接两个等差数列,或者重复拼接一个等差数列,想想确实不妥,这就是为啥 range 类型不支持这两个操作的原因了。由此推论,其它修改动作也会破坏等差数列结构,所以统统不给修改就是了。
4、小结
回顾全文,我得到了两个偏冷门的结论:range 是可迭代对象而不是迭代器;range 对象是不可变的等差序列。
若单纯看结论的话,你也许没有感触,或许还会说这没啥了不得啊。但如果我追问,为什么 range 不是迭代器呢,为什么 range 是不可变序列呢?对这俩问题,你是否还能答出个自圆其说的设计思想呢?(PS:我决定了,若有机会面试别人,我必要问这两个问题的嘿~)
由于 range 对象这细微而有意思的特性,我觉得这篇文章写得值了。本文是作为迭代器系列文章的一篇来写的,所以对于迭代器的基础知识介绍不多,另外,还有一种特殊的迭代器也值得单独成文,那就是生成器了。
分享标题:python库函数解读,python语法库
网站路径:http://scyanting.com/article/hdeojj.html