nosql什么时候出来的,什么事nosql
大数据时代发展历程是什么?
大数据技术发展史:大数据的前世今生
成都创新互联专注为客户提供全方位的互联网综合服务,包含不限于做网站、网站制作、秦淮网络推广、小程序定制开发、秦淮网络营销、秦淮企业策划、秦淮品牌公关、搜索引擎seo、人物专访、企业宣传片、企业代运营等,从售前售中售后,我们都将竭诚为您服务,您的肯定,是我们最大的嘉奖;成都创新互联为所有大学生创业者提供秦淮建站搭建服务,24小时服务热线:028-86922220,官方网址:www.cdcxhl.com
今天我们常说的大数据技术,其实起源于Google在2004年前后发表的三篇论文,也就是我们经常听到的“三驾马车”,分别是分布式文件系统GFS、大数据分布式计算框架MapReduce和NoSQL数据库系统BigTable。
你知道,搜索引擎主要就做两件事情,一个是网页抓取,一个是索引构建,而在这个过程中,有大量的数据需要存储和计算。这“三驾马车”其实就是用来解决这个问题的,你从介绍中也能看出来,一个文件系统、一个计算框架、一个数据库系统。
现在你听到分布式、大数据之类的词,肯定一点儿也不陌生。但你要知道,在2004年那会儿,整个互联网还处于懵懂时代,Google发布的论文实在是让业界为之一振,大家恍然大悟,原来还可以这么玩。
因为那个时间段,大多数公司的关注点其实还是聚焦在单机上,在思考如何提升单机的性能,寻找更贵更好的服务器。而Google的思路是部署一个大规模的服务器集群,通过分布式的方式将海量数据存储在这个集群上,然后利用集群上的所有机器进行数据计算。 这样,Google其实不需要买很多很贵的服务器,它只要把这些普通的机器组织到一起,就非常厉害了。
当时的天才程序员,也是Lucene开源项目的创始人Doug Cutting正在开发开源搜索引擎Nutch,阅读了Google的论文后,他非常兴奋,紧接着就根据论文原理初步实现了类似GFS和MapReduce的功能。
两年后的2006年,Doug Cutting将这些大数据相关的功能从Nutch中分离了出来,然后启动了一个独立的项目专门开发维护大数据技术,这就是后来赫赫有名的Hadoop,主要包括Hadoop分布式文件系统HDFS和大数据计算引擎MapReduce。
当我们回顾软件开发的历史,包括我们自己开发的软件,你会发现,有的软件在开发出来以后无人问津或者寥寥数人使用,这样的软件其实在所有开发出来的软件中占大多数。而有的软件则可能会开创一个行业,每年创造数百亿美元的价值,创造百万计的就业岗位,这些软件曾经是Windows、Linux、Java,而现在这个名单要加上Hadoop的名字。
如果有时间,你可以简单浏览下Hadoop的代码,这个纯用Java编写的软件其实并没有什么高深的技术难点,使用的也都是一些最基础的编程技巧,也没有什么出奇之处,但是它却给社会带来巨大的影响,甚至带动一场深刻的科技革命,推动了人工智能的发展与进步。
我觉得,我们在做软件开发的时候,也可以多思考一下,我们所开发软件的价值点在哪里?真正需要使用软件实现价值的地方在哪里?你应该关注业务、理解业务,有价值导向,用自己的技术为公司创造真正的价值,进而实现自己的人生价值。而不是整天埋头在需求说明文档里,做一个没有思考的代码机器人。
Hadoop发布之后,Yahoo很快就用了起来。大概又过了一年到了2007年,百度和阿里巴巴也开始使用Hadoop进行大数据存储与计算。
2008年,Hadoop正式成为Apache的顶级项目,后来Doug Cutting本人也成为了Apache基金会的主席。自此,Hadoop作为软件开发领域的一颗明星冉冉升起。
同年,专门运营Hadoop的商业公司Cloudera成立,Hadoop得到进一步的商业支持。
这个时候,Yahoo的一些人觉得用MapReduce进行大数据编程太麻烦了,于是便开发了Pig。Pig是一种脚本语言,使用类SQL的语法,开发者可以用Pig脚本描述要对大数据集上进行的操作,Pig经过编译后会生成MapReduce程序,然后在Hadoop上运行。
编写Pig脚本虽然比直接MapReduce编程容易,但是依然需要学习新的脚本语法。于是Facebook又发布了Hive。Hive支持使用SQL语法来进行大数据计算,比如说你可以写个Select语句进行数据查询,然后Hive会把SQL语句转化成MapReduce的计算程序。
这样,熟悉数据库的数据分析师和工程师便可以无门槛地使用大数据进行数据分析和处理了。Hive出现后极大程度地降低了Hadoop的使用难度,迅速得到开发者和企业的追捧。据说,2011年的时候,Facebook大数据平台上运行的作业90%都来源于Hive。
随后,众多Hadoop周边产品开始出现,大数据生态体系逐渐形成,其中包括:专门将关系数据库中的数据导入导出到Hadoop平台的Sqoop;针对大规模日志进行分布式收集、聚合和传输的Flume;MapReduce工作流调度引擎Oozie等。
在Hadoop早期,MapReduce既是一个执行引擎,又是一个资源调度框架,服务器集群的资源调度管理由MapReduce自己完成。但是这样不利于资源复用,也使得MapReduce非常臃肿。于是一个新项目启动了,将MapReduce执行引擎和资源调度分离开来,这就是Yarn。2012年,Yarn成为一个独立的项目开始运营,随后被各类大数据产品支持,成为大数据平台上最主流的资源调度系统。
同样是在2012年,UC伯克利AMP实验室(Algorithms、Machine和People的缩写)开发的Spark开始崭露头角。当时AMP实验室的马铁博士发现使用MapReduce进行机器学习计算的时候性能非常差,因为机器学习算法通常需要进行很多次的迭代计算,而MapReduce每执行一次Map和Reduce计算都需要重新启动一次作业,带来大量的无谓消耗。还有一点就是MapReduce主要使用磁盘作为存储介质,而2012年的时候,内存已经突破容量和成本限制,成为数据运行过程中主要的存储介质。Spark一经推出,立即受到业界的追捧,并逐步替代MapReduce在企业应用中的地位。
一般说来,像MapReduce、Spark这类计算框架处理的业务场景都被称作批处理计算,因为它们通常针对以“天”为单位产生的数据进行一次计算,然后得到需要的结果,这中间计算需要花费的时间大概是几十分钟甚至更长的时间。因为计算的数据是非在线得到的实时数据,而是历史数据,所以这类计算也被称为大数据离线计算。
而在大数据领域,还有另外一类应用场景,它们需要对实时产生的大量数据进行即时计算,比如对于遍布城市的监控摄像头进行人脸识别和嫌犯追踪。这类计算称为大数据流计算,相应地,有Storm、Flink、Spark Streaming等流计算框架来满足此类大数据应用的场景。 流式计算要处理的数据是实时在线产生的数据,所以这类计算也被称为大数据实时计算。
在典型的大数据的业务场景下,数据业务最通用的做法是,采用批处理的技术处理历史全量数据,采用流式计算处理实时新增数据。而像Flink这样的计算引擎,可以同时支持流式计算和批处理计算。
除了大数据批处理和流处理,NoSQL系统处理的主要也是大规模海量数据的存储与访问,所以也被归为大数据技术。 NoSQL曾经在2011年左右非常火爆,涌现出HBase、Cassandra等许多优秀的产品,其中HBase是从Hadoop中分离出来的、基于HDFS的NoSQL系统。
我们回顾软件发展的历史会发现,差不多类似功能的软件,它们出现的时间都非常接近,比如Linux和Windows都是在90年代初出现,Java开发中的各类MVC框架也基本都是同期出现,Android和iOS也是前脚后脚问世。2011年前后,各种NoSQL数据库也是层出不群,我也是在那个时候参与开发了阿里巴巴自己的NoSQL系统。
事物发展有自己的潮流和规律,当你身处潮流之中的时候,要紧紧抓住潮流的机会,想办法脱颖而出,即使没有成功,也会更加洞悉时代的脉搏,收获珍贵的知识和经验。而如果潮流已经退去,这个时候再去往这个方向上努力,只会收获迷茫与压抑,对时代、对自己都没有什么帮助。
但是时代的浪潮犹如海滩上的浪花,总是一浪接着一浪,只要你站在海边,身处这个行业之中,下一个浪潮很快又会到来。你需要敏感而又深刻地去观察,略去那些浮躁的泡沫,抓住真正潮流的机会,奋力一搏,不管成败,都不会遗憾。
正所谓在历史前进的逻辑中前进,在时代发展的潮流中发展。通俗的说,就是要在风口中飞翔。
上面我讲的这些基本上都可以归类为大数据引擎或者大数据框架。而大数据处理的主要应用场景包括数据分析、数据挖掘与机器学习。数据分析主要使用Hive、Spark SQL等SQL引擎完成;数据挖掘与机器学习则有专门的机器学习框架TensorFlow、Mahout以及MLlib等,内置了主要的机器学习和数据挖掘算法。
此外,大数据要存入分布式文件系统(HDFS),要有序调度MapReduce和Spark作业执行,并能把执行结果写入到各个应用系统的数据库中,还需要有一个大数据平台整合所有这些大数据组件和企业应用系统。
图中的所有这些框架、平台以及相关的算法共同构成了大数据的技术体系,我将会在专栏后面逐个分析,帮你能够对大数据技术原理和应用算法构建起完整的知识体系,进可以专职从事大数据开发,退可以在自己的应用开发中更好地和大数据集成,掌控自己的项目。
希望对您有所帮助!~
互联网背景下为什么会出现NoSQL
NoSQL泛指非关系型数据库。随着互联网行业的兴起与发展,传统的数据库结构已经很难适应大规模数据、非结构性数据带来的挑战,也就是现在大数据行业的发展对传统的数据库发出了挑战,而为了应对大规模的非结构性数据的处理,非关系型数据库才会在计算机、软件、数据库等方面得到飞速的发展。
nosql数据库从什么时候发展出来的
文档型数据库
作为最受欢迎的NoSQL产品,文档型数据库MongoDB当仁不让地占据了第一的位置,同时它也是所有NoSQL数据库中排名最靠前的产品(总排行榜第七名)。Apache会的CouchDB排在第二,基于.Net的数据库RavenDB排在第三,Couchbase排在第四。
数据库是什么?Oracle又是啥玩意?
经常会有人问我数据库是干啥的,其实一开始我是拒绝回答的,因为我也不能做到通俗易懂的表达出来,毕竟我接触这个概念也没有多长时间,但随着问的人多了,我觉得是时候脑补一下我的第一堂课了,万一哪天冒出来个货跟你掰扯这事儿,你没分分钟给他说清,最后弄个丢里儿丢面儿,好尴尬呀。
数据库,说白了就是按照数据结构来组织、存储和管理数据的仓库,这些数据是结构化的,并可为多种应用服务。也就是说,数据库是使用计算机服务器来存储数据的,专门用来提供各种数据服务。可以这样想像,过去一个公司的所有财务数据都是放在保险柜里面,而现在我们就可以针对这些财务数据搭建一个数据库放在某台计算机或服务器上面;再比如,企业或事业单位的人事部门常常要把本单位职工的基本情况(职工号、姓名、年龄、性别、籍贯、工资、简历等)存放在表中,这张表就可以看成是一个数据库。有了这个"数据仓库"我们就可以根据需要随时查询某职工的基本情况,也可以查询工资在某个范围内的职工人数等等。这些工作如果都能在计算机上自动进行,那我们的人事管理就可以达到极高的水平。此外,在财务管理、仓库管理、生产管理中也需要建立众多的这种"数据库",使其可以利用计算机实现财务、仓库、生产的自动化管理。最常见的数据库有:银行储蓄系统、手机话费系统、美容美发会员系统、超市会员积分系统、水电费系统、机票或火车票系统等,这些都需要后台数据库基础设施的支撑。举了这么多例子,应该是把数据库说明白了,至少能在大脑里面有个概念,知道这个东西是干啥的。
现在大数据被炒的红得发紫,而大数据的基础也是数据,由此可见,数据是一个企业的核心资源,说它是企业的立身之本、发展之基都不为过,因此,维护数据库的数据库管理员(DBA)是企业不可或缺的。
目前市面上的数据库产品有很多,单从规模上分可分为大型、中型、小型几种,典型的数据库产品如下:
大型数据库:Oracle、DB2、Sybase;
中型数据库:MySQL、SQLServer、Infomix;
小型数据库:Access、VisualFoxpro。在众多的数据库产品中,Oracle数据库一直处于行业领导先地位,也是当今最流行的关系型数据库。Oracle可翻译成"甲骨文",它是一家以数据库为主业的全球化公司,是全球第二大软件公司(第一名是微软公司),目前Oracle在数据库软件市场已经排名第一,数据库软件市场份额达到48.6%,遥遥领先于第二名占有率仅为20.7%的IBM公司的DB2。在中国市场上的计算机专业系统后台所使用的数据库尤以Oracle数据库居多。但是购买Oracle数据库需要很大一笔费用,一般的大型企业使用,需要有专业人员进行管理和维护,中小企业承担不起。中小企业为了节省成本,一般使用MySQL、PostgreSQL这类免费开源的数据库,所以Oracle数据库相关的工作岗位一般是在大型企业中。
对于为什么选择Oracle数据库,而不是其他的数据库?
第一,是因为Oracle数据库占据最大的市场份额,并且越来越大,市场需要很多Oracle数据库方面的人才,中国有句老话说"做对事,选对人",是同样的道理;第二,是很多非Oracle数据库的老系统正往Oracle数据库迁移,其他数据库市场占有率在减少,其他数据库工作者有面临失业的风险;第三,Oracle有大量的官方学习文档,还有部分中文文档,可以有效地进行学习;第四,Oracle有大量的从业人员,有共同方向的朋友可以互相帮助,不再是孤胆英雄;第五,是可以很容易地从Oracle官方网站下载功能齐全的数据库最新版本进行学习,可以让你了解数据库方面的最新发展趋势等。
在此说明,以后的所有内容都是基于Oracle11g数据库产品的,下面我们就简单介绍一下Oracle11g的系列产品:
企业版(EnterpriseEdition)此版本包含了数据库的所有组件,并且能够通过购买选项和程序包来进一步对其增强。
能支持例如大业务量的在线事务处理OLTP(On-LineTransactionProcessing联机事务处理系统)环境、查询密集的数据仓库和要求苛刻的互联网应用程序。
标准版1(StandardEditionOne)此版本为工作组、部门级和互联网、内联网应用程序提供了前所未有的易用性和性价比。从针对小型商务的单服务器环境到大型的分布式部门环境,该版本包含了构建重要商务应用程序所必需的全部工具。它仅许可在最高容量为2个处理器的服务器上使用,支持Windows/Linux/UNIX操作系统,并支持64位平台操作系统。
标准版(StandardEdition)此版本提供了StandardEditionOne所不具有的易用性、能力和性能,并且利用真正的应用集群(RAC)提供了对更大型计算机和服务集群的支持。它可以在最高容量为4个处理器的单台服务器上、或者在一个支持最多4个处理器的集群上使用,可支持Windows、Linux和UNIX操作系统,并支持64位平台操作系统。
简化版此版本支持与标准版1、标准版和企业版完全兼容的单用户开发和部署。通过将Oracle数据库获奖的功能引入到个人工作站中,该版本提供了结合世界上最流行的数据库功能的数据库,并且该数据库具有桌面产品通常具有的易用性和简单性,可支持Linux和Windows操作系统。
从存储结构上来说,目前流行的数据库主要包含以下两种:
RDBMS:关系型数据库,是指采用了关系模型来组织数据的数据库;
NoSQL数据库,是指那些非关系型的、分布式的数据库。简单来说,关系模型指的就是二维表格模型,而一个关系型数据库就是由二维表及其之间的联系所组成的一个数据组织。
关系型数据库优点:
1、容易理解
二维表结构是非常贴近逻辑世界的一个概念,关系模型相对网状、层次等其他模型来说更容易理解。
2、使用方便
通用的SQL语言使得操作关系型数据库非常方便。
3、易于维护
丰富的完整性大大减低了数据冗余和数据部移植的概率。
4、事务安全
所有关系型数据库都不同程度的遵守事物的四个基本属性,因此对于银行、电信、证券等交易型业务是不可或缺的。
关系型数据库的瓶颈:
1、高并发读写需求
网站的用户并发性非常高,往往达到每秒上万次读写请求,对于传统型数据库来说,硬盘I/O是一个很大的瓶颈。
2、海量数据的高效率读写
互联网上每天产生的数据量是巨大的,对于关系型数据库来说,在一张包含海量数据的表中查询,效率是非常低的。
3、高扩展性和可用性
在基于WEB的结构中,数据库是最难进行横向扩展的,当一个应用系统的用户量和访问量与日俱增的时候,数据库却没有办法像WEBServer和APPLICATIONServer那样简单的通过添加更多的硬件和服务节点来扩展性能和负载能力。对于很多需要提供24小时不间断服务的网站来说,对数据库系统进行升级和扩展是非常痛苦的事情,往往需要停机维护和数据迁移。
NoSQL数据库
NoSQL一词首先是CarloStrozzi在1998年提出的。2009年再次提出了NoSQL一词,用于指那些非关系型的、分布式的,且一般不保证遵循ACID原则的数据存储系统。
NoSQL具有以下特点:
1、可以弥补关系型数据库的不足
2、针对某些特定的需求而设计,可以具有极高的性能
3、大部分都是开源的,由于成熟度不够,存在潜在的稳定性和维护性问题。
关系型数据库适用于结构化数据,而非关系型数据库适用于非结构化数据,二者优势互补,相得益彰。
Oracle数据库未来的发展方向是提供结构化、非结构化、半结构化的解决方案,实现关系型数据库和NoSQL共存互补。值得强调的是,目前关系型数据库仍是主流数据库。
虽然NoSQL数据库打破了关系型数据库存储的观念,可以很好地满足WEB2.0时代数据的存储要求,但NoSQL数据库也有自己的缺陷。在现阶段的情况下,可以将关系型数据库和NoSQL数据库结合使用,相互弥补各自的不足。
关于数据库及其代表产品Oracle今天就介绍这么多,有兴趣的可以继续深挖,希望我的介绍能让你对数据库有一个更深入的认识。如果有志于在这方面发展的话,就让我们一起跟往事干杯从头再来。
NoSQL数据库是否意味着缺乏安全性?
NoSQL薄弱的安全性会给企业带来负面影响 。Imperva公司创始人兼CTO Amichai Shulman如是说。在新的一年中,无疑会有更多企业开始或筹划部署NoSQL。方案落实后就会逐渐发现种种安全问题,因此早做准备才是正确的选择。 作为传统关系型数据库的替代方案,NoSQL在查询中并不使用SQL语言,而且允许用户随时变更数据属性。此类数据库以扩展性良好著称,并能够在需要大量应用程序与数据库本身进行实时交互的交易处理任务中发挥性能优势,Couchbase创始人兼产品部门高级副总裁James Phillips解释称:NoSQL以交易业务为核心。它更注重实时处理能力并且擅长直接对数据进行操作,大幅度促进了交互型软件系统的发展。Phillips指出。其中最大的优势之一是能够随时改变(在属性方面),由于结构性的弱化,修改过程非常便捷。 NoSQL最大优势影响其安全性 NoSQL的关键性特色之一是其动态的数据模型,Shulman解释道。我可以在其运作过程中加入新的属性记录。因此与这种结构相匹配的安全模型必须具备一定的前瞻性规划。也就是说,它必须能够了解数据库引入的新属性将引发哪些改变,以及新加入的属性拥有哪些权限。然而这个层面上的安全概念目前尚不存在,根本没有这样的解决方案。 根据Phillips的说法,某些NoSQL开发商已经开始着手研发安全机制,至少在尝试保护数据的完整性。在关系型数据库领域,如果我们的数据组成不正确,那么它将无法与结构并行运作,换言之数据插入操作整体将宣告失败。目前各种验证规则与完整性检查已经比较完善,而事实证明这些验证机制都能在NoSQL中发挥作用。我们与其他人所推出的解决方案类似,都会在插入一条新记录或是文档型规则时触发,并在执行过程中确保插入数据的正确性。 Shulman预计新用户很快将在配置方面捅出大娄子,这并非因为IT工作人员的玩忽职守,实际上主要原因是NoSQL作为一项新技术导致大多数人对其缺乏足够的知识基础。Application Security研发部门TeamSHATTER的经理Alex Rothacker对上述观点表示赞同。他指出,培训的一大问题在于,大多数NoSQL的从业者往往属于新生代IT人士,他们对于技术了解较多,但往往缺乏足够的安全管理经验。 如果他们从传统关系型数据库入手,那么由于强制性安全机制的完备,他们可以在使用中学习。但NoSQL,只有行家才能通过观察得出正确结论,并在大量研究工作后找到一套完备的安全解决方案。因此可能有90%的从业者由于知识储备、安全经验或是工作时间的局限而无法做到这一点。 NoSQL需在安全性方面进行优化 尽管Phillips认同新技术与旧经验之间存在差异,但企业在推广NoSQL时加大对安全性的关注会起到很大程度的积极作用。他认为此类数据存储机制与传统关系类数据库相比,其中包含着的敏感类信息更少,而且与企业网络内部其它应用程序的接触机会也小得多。 他们并不把这项新技术完全当成数据库使用,正如我们在收集整理大量来自其它应用程序的业务类数据时,往往也会考虑将其作为企业数据存储机制一样,他补充道。当然,如果我打算研发一套具备某种特定功能的社交网络、社交游戏或是某种特殊web应用程序,也很可能会将其部署于防火墙之下。这样一来它不仅与应用程序紧密结合,也不会被企业中的其它部门所触及。 但Rothacker同时表示,这种过度依赖周边安全机制的数据库系统也存在着极其危险的漏洞。一旦系统完全依附于周边安全模型,那么验证机制就必须相对薄弱,而且缺乏多用户管理及数据访问方面的安全保护。只要拥有高权限账户,我们几乎能访问存储机制中的一切数据。举例来说,Brian Sullivan就在去年的黑帽大会上演示了如何在完全不清楚数据具体内容的情况下,将其信息罗列出来甚至导出。 而根据nCircle公司CTO Tim ‘TK’ Keanini的观点,即使是与有限的应用程序相关联,NoSQL也很有可能被暴露在互联网上。在缺少严密网络划分的情况下,它可能成为攻击者窥探存储数据的薄弱环节。因为NoSQL在设计上主要用于互联网规模的部署,所以它很可能被直接连接到互联网中,进而面临大量攻击行为。 其中发生机率最高的攻击行为就是注入式攻击,这也是一直以来肆虐于关系类数据库领域的头号公敌。尽管NoSQL没有将SQL作为查询语言,也并不代表它能够免受注入式攻击的威胁。虽然不少人宣称SQL注入在NoSQL这边不起作用,但其中的原理是完全一致的。攻击者需要做的只是改变自己注入内容的语法形式,Rothacker解释称。也就是说虽然SQL注入不会出现,但JavaScript注入或者JSON注入同样能威胁安全。 此外,攻击者在筹划对这类数据库展开侵袭时,也很可能进一步优化自己的工具。不成熟的安全技术往往带来这样的窘境:需要花费大量时间学习如何保障其安全,但几乎每个IT人士都能迅速掌握攻击活动的组织方法。因此我认为攻击者将会始终走在安全部署的前面,Shulman说道。遗憾的是搞破坏总比防范工作更容易,而我们已经看到不少NoSQL技术方面的公开漏洞,尤其是目前引起热议的、以JSON注入为载体的攻击方式。 NoSQL安全性并非其阻碍 然而,这一切都不应该成为企业使用NoSQL的阻碍,他总结道。我认为归根结底,这应该算是企业的一种商业决策。只要这种选择能够带来吸引力巨大的商业机遇,就要承担一定风险,Shulman解释道。但应该采取一定措施以尽量弱化这种风险。 举例来说,鉴于数据库对外部安全机制的依赖性,Rothacker建议企业积极考虑引入加密方案。他警告称,企业必须对与NoSQL相对接的应用程序代码仔细检查。换言之,企业必须严格挑选负责此类项目部署的人选,确保将最好的人才用于这方面事务,Shulman表示。当大家以NoSQL为基础编写应用程序时,必须启用有经验的编程人员,因为客户端软件是抵挡安全问题的第一道屏障。切实为额外缓冲区的部署留出时间与预算,这能够让员工有闲暇反思自己的工作内容并尽量多顾及安全考量多想一点就是进步。综上所述,这可能与部署传统的关系类数据库也没什么不同。 具有讽刺意味的是,近年来数据库应用程序在安全性方面的提升基本都跟数据库本身没什么关系,nCircle公司安全研究及开发部门总监Oliver Lavery如是说。
文章名称:nosql什么时候出来的,什么事nosql
当前地址:http://scyanting.com/article/hdicgp.html