关于Erpnosql场景的信息
nosql(mongodb)的适用场景是什么,比如读多写少,还是写多读少,还是别的什么
一般nosql适用的场景都是读多写少,因为数据库主要压力来自于用户的读取数据。
在鹿寨等地区,都构建了全面的区域性战略布局,加强发展的系统性、市场前瞻性、产品创新能力,以专注、极致的服务理念,为客户提供网站制作、网站建设 网站设计制作按需策划,公司网站建设,企业网站建设,成都品牌网站建设,成都全网营销,外贸网站建设,鹿寨网站建设费用合理。
为什么要使用NoSQL?NOSQL的优势
这次的NoSQL专栏系列将先整体介绍NoSQL,然后介绍如何把NoSQL运用到自己的项目中合适的场景中,还会适当地分析一些成功案例,希望有成功使用NoSQL经验的朋友给我提供一些线索和信息。
NoSQL概念随着web2.0的快速发展,非关系型、分布式数据存储得到了快速的发展,它们不保证关系数据的ACID特性。NoSQL概念在2009年被提了出来。NoSQL最常见的解释是“non-relational”,“Not Only SQL”也被很多人接受。(“NoSQL”一词最早于1998年被用于一个轻量级的关系数据库的名字。)
NoSQL被我们用得最多的当数key-value存储,当然还有其他的文档型的、列存储、图型数据库、xml数据库等。在NoSQL概念提出之前,这些数据库就被用于各种系统当中,但是却很少用于web互联网应用。比如cdb、qdbm、bdb数据库。
传统关系数据库的瓶颈
传统的关系数据库具有不错的性能,高稳定型,久经历史考验,而且使用简单,功能强大,同时也积累了大量的成功案例。在互联网领域,MySQL成为了绝对靠前的王者,毫不夸张的说,MySQL为互联网的发展做出了卓越的贡献。
在90年代,一个网站的访问量一般都不大,用单个数据库完全可以轻松应付。在那个时候,更多的都是静态网页,动态交互类型的网站不多。
到了最近10年,网站开始快速发展。火爆的论坛、博客、sns、微博逐渐引领web领域的潮流。在初期,论坛的流量其实也不大,如果你接触网络比较早,你可能还记得那个时候还有文本型存储的论坛程序,可以想象一般的论坛的流量有多大。
Memcached+MySQL
后来,随着访问量的上升,几乎大部分使用MySQL架构的网站在数据库上都开始出现了性能问题,web程序不再仅仅专注在功能上,同时也在追求性能。程序员们开始大量的使用缓存技术来缓解数据库的压力,优化数据库的结构和索引。开始比较流行的是通过文件缓存来缓解数据库压力,但是当访问量继续增大的时候,多台web机器通过文件缓存不能共享,大量的小文件缓存也带了了比较高的IO压力。在这个时候,Memcached就自然的成为一个非常时尚的技术产品。
Memcached作为一个独立的分布式的缓存服务器,为多个web服务器提供了一个共享的高性能缓存服务,在Memcached服务器上,又发展了根据hash算法来进行多台Memcached缓存服务的扩展,然后又出现了一致性hash来解决增加或减少缓存服务器导致重新hash带来的大量缓存失效的弊端。当时,如果你去面试,你说你有Memcached经验,肯定会加分的。
Mysql主从读写分离
由于数据库的写入压力增加,Memcached只能缓解数据库的读取压力。读写集中在一个数据库上让数据库不堪重负,大部分网站开始使用主从复制技术来达到读写分离,以提高读写性能和读库的可扩展性。Mysql的master-slave模式成为这个时候的网站标配了。
分表分库随着web2.0的继续高速发展,在Memcached的高速缓存,MySQL的主从复制,读写分离的基础之上,这时MySQL主库的写压力开始出现瓶颈,而数据量的持续猛增,由于MyISAM使用表锁,在高并发下会出现严重的锁问题,大量的高并发MySQL应用开始使用InnoDB引擎代替MyISAM。同时,开始流行使用分表分库来缓解写压力和数据增长的扩展问题。这个时候,分表分库成了一个热门技术,是面试的热门问题也是业界讨论的热门技术问题。也就在这个时候,MySQL推出了还不太稳定的表分区,这也给技术实力一般的公司带来了希望。虽然MySQL推出了MySQL Cluster集群,但是由于在互联网几乎没有成功案例,性能也不能满足互联网的要求,只是在高可靠性上提供了非常大的保证。
MySQL的扩展性瓶颈
在互联网,大部分的MySQL都应该是IO密集型的,事实上,如果你的MySQL是个CPU密集型的话,那么很可能你的MySQL设计得有性能问题,需要优化了。大数据量高并发环境下的MySQL应用开发越来越复杂,也越来越具有技术挑战性。分表分库的规则把握都是需要经验的。虽然有像淘宝这样技术实力强大的公司开发了透明的中间件层来屏蔽开发者的复杂性,但是避免不了整个架构的复杂性。分库分表的子库到一定阶段又面临扩展问题。还有就是需求的变更,可能又需要一种新的分库方式。
MySQL数据库也经常存储一些大文本字段,导致数据库表非常的大,在做数据库恢复的时候就导致非常的慢,不容易快速恢复数据库。比如1000万4KB大小的文本就接近40GB的大小,如果能把这些数据从MySQL省去,MySQL将变得非常的小。
关系数据库很强大,但是它并不能很好的应付所有的应用场景。MySQL的扩展性差(需要复杂的技术来实现),大数据下IO压力大,表结构更改困难,正是当前使用MySQL的开发人员面临的问题。
NOSQL的优势易扩展NoSQL数据库种类繁多,但是一个共同的特点都是去掉关系数据库的关系型特性。数据之间无关系,这样就非常容易扩展。也无形之间,在架构的层面上带来了可扩展的能力。
大数据量,高性能
NoSQL数据库都具有非常高的读写性能,尤其在大数据量下,同样表现优秀。这得益于它的无关系性,数据库的结构简单。一般MySQL使用Query Cache,每次表的更新Cache就失效,是一种大粒度的Cache,在针对web2.0的交互频繁的应用,Cache性能不高。而NoSQL的Cache是记录级的,是一种细粒度的Cache,所以NoSQL在这个层面上来说就要性能高很多了。
灵活的数据模型
NoSQL无需事先为要存储的数据建立字段,随时可以存储自定义的数据格式。而在关系数据库里,增删字段是一件非常麻烦的事情。如果是非常大数据量的表,增加字段简直就是一个噩梦。这点在大数据量的web2.0时代尤其明显。
高可用NoSQL在不太影响性能的情况,就可以方便的实现高可用的架构。比如Cassandra,HBase模型,通过复制模型也能实现高可用。
总结NoSQL数据库的出现,弥补了关系数据(比如MySQL)在某些方面的不足,在某些方面能极大的节省开发成本和维护成本。
MySQL和NoSQL都有各自的特点和使用的应用场景,两者的紧密结合将会给web2.0的数据库发展带来新的思路。
一、NoSQL数据库简介
Web1.0的时代,数据访问量很有限,用一夫当关的高性能的单点服务器可以解决大部分问题。
随着Web2.0的时代的到来,用户访问量大幅度提升,同时产生了大量的用户数据。加上后来的智能移动设备的普及,所有的互联网平台都面临了巨大的性能挑战。
NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,泛指非关系型的数据库。
NoSQL 不依赖业务逻辑方式存储,而以简单的key-value模式存储。因此大大的增加了数据库的扩展能力。
Memcache Memcache Redis Redis MongoDB MongoDB 列式数据库 列式数据库 Hbase Hbase
HBase是Hadoop项目中的数据库。它用于需要对大量的数据进行随机、实时的读写操作的场景中。
HBase的目标就是处理数据量非常庞大的表,可以用普通的计算机处理超过10亿行数据,还可处理有数百万列元素的数据表。
Cassandra Cassandra
Apache Cassandra是一款免费的开源NoSQL数据库,其设计目的在于管理由大量商用服务器构建起来的庞大集群上的海量数据集(数据量通常达到PB级别)。在众多显著特性当中,Cassandra最为卓越的长处是对写入及读取操作进行规模调整,而且其不强调主集群的设计思路能够以相对直观的方式简化各集群的创建与扩展流程。
主要应用:社会关系,公共交通网络,地图及网络拓谱(n*(n-1)/2)
为什么海量数据场景中NoSQL越来越重要
本质是因为:随着互联网的进一步发展与各行业信息化建设进程加快、参与者的增多,人们对软件有了更多更新的要求,需要软件不仅能实现功能,而且要求保证许多人可以共同参与使用,因而软件所需承载的数据量和吞吐量必须达到相应的需求。而目前的关系型数据库在某些方面有一些缺点,导致不能满足需要。
具体则需要对比关系型数据库与Nosql之间的区别可以得出
关系型数据库
关系型数据库把所有的数据都通过行和列的二元表现形式表示出来。
关系型数据库的优势:
1. 保持数据的一致性(事务处理)
2.由于以标准化为前提,数据更新的开销很小(相同的字段基本上都只有一处)
3. 可以进行Join等复杂查询
其中能够保持数据的一致性是关系型数据库的最大优势。
关系型数据库的不足:
不擅长的处理
1. 大量数据的写入处理(这点尤为重要)
2. 为有数据更新的表做索引或表结构(schema)变更
3. 字段不固定时应用
4. 对简单查询需要快速返回结果的处理
--大量数据的写入处理
读写集中在一个数据库上让数据库不堪重负,大部分网站已使用主从复制技术实现读写分离,以提高读写性能和读库的可扩展性。
所以在进行大量数据操作时,会使用数据库主从模式。数据的写入由主数据库负责,数据的读入由从数据库负责,可以比较简单地通过增加从数据库来实现规模化,但是数据的写入却完全没有简单的方法来解决规模化问题。
第一,要想将数据的写入规模化,可以考虑把主数据库从一台增加到两台,作为互相关联复制的二元主数据库使用,确实这样可以把每台主数据库的负荷减少一半,但是更新处理会发生冲突,可能会造成数据的不一致,为了避免这样的问题,需要把对每个表的请求分别分配给合适的主数据库来处理。
第二,可以考虑把数据库分割开来,分别放在不同的数据库服务器上,比如将不同的表放在不同的数据库服务器上,数据库分割可以减少每台数据库服务器上的数据量,以便减少硬盘IO的输入、输出处理,实现内存上的高速处理。但是由于分别存储字不同服务器上的表之间无法进行Join处理,数据库分割的时候就需要预先考虑这些问题,数据库分割之后,如果一定要进行Join处理,就必须要在程序中进行关联,这是非常困难的。
--为有数据更新的表做索引或表结构变更
在使用关系型数据库时,为了加快查询速度需要创建索引,为了增加必要的字段就一定要改变表结构,为了进行这些处理,需要对表进行共享锁定,这期间数据变更、更新、插入、删除等都是无法进行的。如果需要进行一些耗时操作,例如为数据量比较大的表创建索引或是变更其表结构,就需要特别注意,长时间内数据可能无法进行更新。
--字段不固定时的应用
如果字段不固定,利用关系型数据库也是比较困难的,有人会说,需要的时候加个字段就可以了,这样的方法也不是不可以,但在实际运用中每次都进行反复的表结构变更是非常痛苦的。你也可以预先设定大量的预备字段,但这样的话,时间一长很容易弄不清除字段和数据的对应状态,即哪个字段保存有哪些数据。
--对简单查询需要快速返回结果的处理 (这里的“简单”指的是没有复杂的查询条件)
这一点称不上是缺点,但不管怎样,关系型数据库并不擅长对简单的查询快速返回结果,因为关系型数据库是使用专门的sql语言进行数据读取的,它需要对sql与越南进行解析,同时还有对表的锁定和解锁等这样的额外开销,这里并不是说关系型数据库的速度太慢,而只是想告诉大家若希望对简单查询进行高速处理,则没有必要非使用关系型数据库不可。
NoSQL数据库
关系型数据库应用广泛,能进行事务处理和表连接等复杂查询。相对地,NoSQL数据库只应用在特定领域,基本上不进行复杂的处理,但它恰恰弥补了之前所列举的关系型数据库的不足之处。
优点:
易于数据的分散
各个数据之间存在关联是关系型数据库得名的主要原因,为了进行join处理,关系型数据库不得不把数据存储在同一个服务器内,这不利于数据的分散,这也是关系型数据库并不擅长大数据量的写入处理的原因。相反NoSQL数据库原本就不支持Join处理,各个数据都是独立设计的,很容易把数据分散在多个服务器上,故减少了每个服务器上的数据量,即使要处理大量数据的写入,也变得更加容易,数据的读入操作当然也同样容易。
典型的NoSQL数据库
临时性键值存储(memcached、Redis)、永久性键值存储(ROMA、Redis)、面向文档的数据库(MongoDB、CouchDB)、面向列的数据库(Cassandra、HBase)
一、 键值存储
它的数据是以键值的形式存储的,虽然它的速度非常快,但基本上只能通过键的完全一致查询获取数据,根据数据的保存方式可以分为临时性、永久性和两者兼具 三种。
(1)临时性
所谓临时性就是数据有可能丢失,memcached把所有数据都保存在内存中,这样保存和读取的速度非常快,但是当memcached停止时,数据就不存在了。由于数据保存在内存中,所以无法操作超出内存容量的数据,旧数据会丢失。总结来说:
。在内存中保存数据
。可以进行非常快速的保存和读取处理
。数据有可能丢失
(2)永久性
所谓永久性就是数据不会丢失,这里的键值存储是把数据保存在硬盘上,与临时性比起来,由于必然要发生对硬盘的IO操作,所以性能上还是有差距的,但数据不会丢失是它最大的优势。总结来说:
。在硬盘上保存数据
。可以进行非常快速的保存和读取处理(但无法与memcached相比)
。数据不会丢失
(3) 两者兼备
Redis属于这种类型。Redis有些特殊,临时性和永久性兼具。Redis首先把数据保存在内存中,在满足特定条件(默认是 15分钟一次以上,5分钟内10个以上,1分钟内10000个以上的键发生变更)的时候将数据写入到硬盘中,这样既确保了内存中数据的处理速度,又可以通过写入硬盘来保证数据的永久性,这种类型的数据库特别适合处理数组类型的数据。总结来说:
。同时在内存和硬盘上保存数据
。可以进行非常快速的保存和读取处理
。保存在硬盘上的数据不会消失(可以恢复)
。适合于处理数组类型的数据
二、面向文档的数据库
MongoDB、CouchDB属于这种类型,它们属于NoSQL数据库,但与键值存储相异。
(1)不定义表结构
即使不定义表结构,也可以像定义了表结构一样使用,还省去了变更表结构的麻烦。
(2)可以使用复杂的查询条件
跟键值存储不同的是,面向文档的数据库可以通过复杂的查询条件来获取数据,虽然不具备事务处理和Join这些关系型数据库所具有的处理能力,但初次以外的其他处理基本上都能实现。
三、 面向列的数据库
Cassandra、HBae、HyperTable属于这种类型,由于近年来数据量出现爆发性增长,这种类型的NoSQL数据库尤其引入注目。
普通的关系型数据库都是以行为单位来存储数据的,擅长以行为单位的读入处理,比如特定条件数据的获取。因此,关系型数据库也被成为面向行的数据库。相反,面向列的数据库是以列为单位来存储数据的,擅长以列为单位读入数据。
面向列的数据库具有搞扩展性,即使数据增加也不会降低相应的处理速度(特别是写入速度),所以它主要应用于需要处理大量数据的情况。另外,把它作为批处理程序的存储器来对大量数据进行更新也是非常有用的。但由于面向列的数据库跟现行数据库存储的思维方式有很大不同,故应用起来十分困难。
总结:关系型数据库与NoSQL数据库并非对立而是互补的关系,即通常情况下使用关系型数据库,在适合使用NoSQL的时候使用NoSQL数据库,让NoSQL数据库对关系型数据库的不足进行弥补。
nosql能够用再哪些场景
nosql分类太多了,下面列举几个比较常见的:
Redis:非常适合需要表达时间线的web服务,例如微博
Cassandra:只有顺序写,没有随机写的设计,满足高负荷情形的性能需求
MongoDB:面向文档,擅长处理非结构化数据
Neo4J:可以快速实现基于图的计算(如果用SQL计算可能花更长的时间)
希望对你所有帮助。
nosql数据库一般有哪几种类型?分别用在什么场景
特点:
它们可以处理超大量的数据。
它们运行在便宜的PC服务器集群上。
PC集群扩充起来非常方便并且成本很低,避免了“sharding”操作的复杂性和成本。
它们击碎了性能瓶颈。
NoSQL的支持者称,通过NoSQL架构可以省去将Web或Java应用和数据转换成SQL友好格式的时间,执行速度变得更快。
“SQL并非适用于所有的程序代码,” 对于那些繁重的重复操作的数据,SQL值得花钱。但是当数据库结构非常简单时,SQL可能没有太大用处。
没有过多的操作。
虽然NoSQL的支持者也承认关系数据库提供了无可比拟的功能集合,而且在数据完整性上也发挥绝对稳定,他们同时也表示,企业的具体需求可能没有那么多。
Bootstrap支持
因为NoSQL项目都是开源的,因此它们缺乏供应商提供的正式支持。这一点它们与大多数开源项目一样,不得不从社区中寻求支持。
优点:
易扩展
NoSQL数据库种类繁多,但是一个共同的特点都是去掉关系数据库的关系型特性。数据之间无关系,这样就非常容易扩展。也无形之间,在架构的层面上带来了可扩展的能力。
大数据量,高性能
NoSQL数据库都具有非常高的读写性能,尤其在大数据量下,同样表现优秀。这得益于它的无关系性,数据库的结构简单。一般MySQL使用 Query Cache,每次表的更新Cache就失效,是一种大粒度的Cache,在针对web2.0的交互频繁的应用,Cache性能不高。而NoSQL的 Cache是记录级的,是一种细粒度的Cache,所以NoSQL在这个层面上来说就要性能高很多了。
灵活的数据模型
NoSQL无需事先为要存储的数据建立字段,随时可以存储自定义的数据格式。而在关系数据库里,增删字段是一件非常麻烦的事情。如果是非常大数据量的表,增加字段简直就是一个噩梦。这点在大数据量的web2.0时代尤其明显。
高可用
NoSQL在不太影响性能的情况,就可以方便的实现高可用的架构。比如Cassandra,HBase模型,通过复制模型也能实现高可用。
主要应用:
Apache HBase
这个大数据管理平台建立在谷歌强大的BigTable管理引擎基础上。作为具有开源、Java编码、分布式多个优势的数据库,Hbase最初被设计应用于Hadoop平台,而这一强大的数据管理工具,也被Facebook采用,用于管理消息平台的庞大数据。
Apache Storm
用于处理高速、大型数据流的分布式实时计算系统。Storm为Apache Hadoop添加了可靠的实时数据处理功能,同时还增加了低延迟的仪表板、安全警报,改进了原有的操作方式,帮助企业更有效率地捕获商业机会、发展新业务。
Apache Spark
该技术采用内存计算,从多迭代批量处理出发,允许将数据载入内存做反复查询,此外还融合数据仓库、流处理和图计算等多种计算范式,Spark用Scala语言实现,构建在HDFS上,能与Hadoop很好的结合,而且运行速度比MapReduce快100倍。
Apache Hadoop
该技术迅速成为了大数据管理标准之一。当它被用来管理大型数据集时,对于复杂的分布式应用,Hadoop体现出了非常好的性能,平台的灵活性使它可以运行在商用硬件系统,它还可以轻松地集成结构化、半结构化和甚至非结构化数据集。
Apache Drill
你有多大的数据集?其实无论你有多大的数据集,Drill都能轻松应对。通过支持HBase、Cassandra和MongoDB,Drill建立了交互式分析平台,允许大规模数据吞吐,而且能很快得出结果。
Apache Sqoop
也许你的数据现在还被锁定于旧系统中,Sqoop可以帮你解决这个问题。这一平台采用并发连接,可以将数据从关系数据库系统方便地转移到Hadoop中,可以自定义数据类型以及元数据传播的映射。事实上,你还可以将数据(如新的数据)导入到HDFS、Hive和Hbase中。
Apache Giraph
这是功能强大的图形处理平台,具有很好可扩展性和可用性。该技术已经被Facebook采用,Giraph可以运行在Hadoop环境中,可以将它直接部署到现有的Hadoop系统中。通过这种方式,你可以得到强大的分布式作图能力,同时还能利用上现有的大数据处理引擎。
Cloudera Impala
Impala模型也可以部署在你现有的Hadoop群集上,监视所有的查询。该技术和MapReduce一样,具有强大的批处理能力,而且Impala对于实时的SQL查询也有很好的效果,通过高效的SQL查询,你可以很快的了解到大数据平台上的数据。
Gephi
它可以用来对信息进行关联和量化处理,通过为数据创建功能强大的可视化效果,你可以从数据中得到不一样的洞察力。Gephi已经支持多个图表类型,而且可以在具有上百万个节点的大型网络上运行。Gephi具有活跃的用户社区,Gephi还提供了大量的插件,可以和现有系统完美的集成到一起,它还可以对复杂的IT连接、分布式系统中各个节点、数据流等信息进行可视化分析。
MongoDB
这个坚实的平台一直被很多组织推崇,它在大数据管理上有极好的性能。MongoDB最初是由DoubleClick公司的员工创建,现在该技术已经被广泛的应用于大数据管理。MongoDB是一个应用开源技术开发的NoSQL数据库,可以用于在JSON这样的平台上存储和处理数据。目前,纽约时报、Craigslist以及众多企业都采用了MongoDB,帮助他们管理大型数据集。(Couchbase服务器也作为一个参考)。
十大顶尖公司:
Amazon Web Services
Forrester将AWS称为“云霸主”,谈到云计算领域的大数据,那就不得不提到亚马逊。该公司的Hadoop产品被称为EMR(Elastic Map Reduce),AWS解释这款产品采用了Hadoop技术来提供大数据管理服务,但它不是纯开源Hadoop,经过修改后现在被专门用在AWS云上。
Forrester称EMR有很好的市场前景。很多公司基于EMR为客户提供服务,有一些公司将EMR应用于数据查询、建模、集成和管理。而且AWS还在创新,Forrester称未来EMR可以基于工作量的需要自动缩放调整大小。亚马逊计划为其产品和服务提供更强大的EMR支持,包括它的RedShift数据仓库、新公布的Kenesis实时处理引擎以及计划中的NoSQL数据库和商业智能工具。不过AWS还没有自己的Hadoop发行版。
Cloudera
Cloudera有开源Hadoop的发行版,这个发行版采用了Apache Hadoop开源项目的很多技术,不过基于这些技术的发行版也有很大的进步。Cloudera为它的Hadoop发行版开发了很多功能,包括Cloudera管理器,用于管理和监控,以及名为Impala的SQL引擎等。Cloudera的Hadoop发行版基于开源Hadoop,但也不是纯开源的产品。当Cloudera的客户需要Hadoop不具备的某些功能时,Cloudera的工程师们就会实现这些功能,或者找一个拥有这项技术的合作伙伴。Forrester表示:“Cloudera的创新方法忠于核心Hadoop,但因为其可实现快速创新并积极满足客户需求,这一点使它不同于其他那些供应商。”目前,Cloudera的平台已经拥有200多个付费客户,一些客户在Cloudera的技术支持下已经可以跨1000多个节点实现对PB级数据的有效管理。
Hortonworks
和Cloudera一样,Hortonworks是一个纯粹的Hadoop技术公司。与Cloudera不同的是,Hortonworks坚信开源Hadoop比任何其他供应商的Hadoop发行版都要强大。Hortonworks的目标是建立Hadoop生态圈和Hadoop用户社区,推进开源项目的发展。Hortonworks平台和开源Hadoop联系紧密,公司管理人员表示这会给用户带来好处,因为它可以防止被供应商套牢(如果Hortonworks的客户想要离开这个平台,他们可以轻松转向其他开源平台)。这并不是说Hortonworks完全依赖开源Hadoop技术,而是因为该公司将其所有开发的成果回报给了开源社区,比如Ambari,这个工具就是由Hortonworks开发而成,用来填充集群管理项目漏洞。Hortonworks的方案已经得到了Teradata、Microsoft、Red Hat和SAP这些供应商的支持。
IBM
当企业考虑一些大的IT项目时,很多人首先会想到IBM。IBM是Hadoop项目的主要参与者之一,Forrester称IBM已有100多个Hadoop部署,它的很多客户都有PB级的数据。IBM在网格计算、全球数据中心和企业大数据项目实施等众多领域有着丰富的经验。“IBM计划继续整合SPSS分析、高性能计算、BI工具、数据管理和建模、应对高性能计算的工作负载管理等众多技术。”
Intel
和AWS类似,英特尔不断改进和优化Hadoop使其运行在自己的硬件上,具体来说,就是让Hadoop运行在其至强芯片上,帮助用户打破Hadoop系统的一些限制,使软件和硬件结合的更好,英特尔的Hadoop发行版在上述方面做得比较好。Forrester指出英特尔在最近才推出这个产品,所以公司在未来还有很多改进的可能,英特尔和微软都被认为是Hadoop市场上的潜力股。
MapR Technologies
MapR的Hadoop发行版目前为止也许是最好的了,不过很多人可能都没有听说过。Forrester对Hadoop用户的调查显示,MapR的评级最高,其发行版在架构和数据处理能力上都获得了最高分。MapR已将一套特殊功能融入其Hadoop发行版中。例如网络文件系统(NFS)、灾难恢复以及高可用性功能。Forrester说MapR在Hadoop市场上没有Cloudera和Hortonworks那样的知名度,MapR要成为一个真正的大企业,还需要加强伙伴关系和市场营销。
Microsoft
微软在开源软件问题上一直很低调,但在大数据形势下,它不得不考虑让Windows也兼容Hadoop,它还积极投入到开源项目中,以更广泛地推动Hadoop生态圈的发展。我们可以在微软的公共云Windows Azure HDInsight产品中看到其成果。微软的Hadoop服务基于Hortonworks的发行版,而且是为Azure量身定制的。
微软也有一些其他的项目,包括名为Polybase的项目,让Hadoop查询实现了SQLServer查询的一些功能。Forrester说:“微软在数据库、数据仓库、云、OLAP、BI、电子表格(包括PowerPivot)、协作和开发工具市场上有很大优势,而且微软拥有庞大的用户群,但要在Hadoop这个领域成为行业领导者还有很远的路要走。”
Pivotal Software
EMC和Vmware部分大数据业务分拆组合产生了Pivotal。Pivotal一直努力构建一个性能优越的Hadoop发行版,为此,Pivotal在开源Hadoop的基础上又添加了一些新的工具,包括一个名为HAWQ的SQL引擎以及一个专门解决大数据问题的Hadoop应用。Forrester称Pivotal Hadoop平台的优势在于它整合了Pivotal、EMC、Vmware的众多技术,Pivotal的真正优势实际上等于EMC和Vmware两大公司为其撑腰。到目前为止,Pivotal的用户还不到100个,而且大多是中小型客户。
Teradata
对于Teradata来说,Hadoop既是一种威胁也是一种机遇。数据管理,特别是关于SQL和关系数据库这一领域是Teradata的专长。所以像Hadoop这样的NoSQL平台崛起可能会威胁到Teradata。相反,Teradata接受了Hadoop,通过与Hortonworks合作,Teradata在Hadoop平台集成了SQL技术,这使Teradata的客户可以在Hadoop平台上方便地使用存储在Teradata数据仓库中的数据。
AMPLab
通过将数据转变为信息,我们才可以理解世界,而这也正是AMPLab所做的。AMPLab致力于机器学习、数据挖掘、数据库、信息检索、自然语言处理和语音识别等多个领域,努力改进对信息包括不透明数据集内信息的甄别技术。除了Spark,开源分布式SQL查询引擎Shark也源于AMPLab,Shark具有极高的查询效率,具有良好的兼容性和可扩展性。近几年的发展使计算机科学进入到全新的时代,而AMPLab为我们设想一个运用大数据、云计算、通信等各种资源和技术灵活解决难题的方案,以应对越来越复杂的各种难题。
当前文章:关于Erpnosql场景的信息
文章URL:http://scyanting.com/article/hdshsd.html