python三次样条函数 三次样条插值 python
Python数据分析在数学建模中的应用汇总(持续更新中!)
1、Numpy常用方法使用大全(超详细)
成都一家集口碑和实力的网站建设服务商,拥有专业的企业建站团队和靠谱的建站技术,十年企业及个人网站建设经验 ,为成都千余家客户提供网页设计制作,网站开发,企业网站制作建设等服务,包括成都营销型网站建设,品牌网站设计,同时也为不同行业的客户提供成都网站建设、成都网站制作的服务,包括成都电商型网站制作建设,装修行业网站制作建设,传统机械行业网站建设,传统农业行业网站制作建设。在成都做网站,选网站制作建设服务商就选成都创新互联公司。
1、Series和DataFrame简单入门
2、Pandas操作CSV文件的读写
3、Pandas处理DataFrame,Series进行作图
1、Matplotlib绘图之属性设置
2、Matplotlib绘制误差条形图、饼图、等高线图、3D柱形图
1、层次分析法(AHP)——算数平均值法、几何平均值法、特征值法(Python实现,超详细注释)
2、Python实现TOPSIS分析法(优劣解距离法)
3、Python实现线性插值和三次样条插值
4、Python实现线性函数的拟合算法
5、Python实现统计描述以及计算皮尔逊相关系数
6、Python实现迪杰斯特拉算法和贝尔曼福特算法求解最短路径
csaps()函数对应python什么函数
return 值:只能返回一次,只要执行return函数就终止
返回值:没有类型限制,也没有个数限制
没有return:None
返回一个值
返回多个值:元组
如何通过python实现三次样条插值
spline函数可以实现三次样条插值 x = 0:10; y = sin(x); xx = 0:.25:10; yy = spline(x,y,xx); plot(x,y,'o',xx,yy) 另外fnplt csapi这两个函数也是三次样条插值函数,具体你可以help一下!
数值分析中的样条函数:使用scipy.interpolate.splrep函数实现
在 数学 学科 数值分析 中, 样条 是一种特殊的 函数 ,由 多项式 分段定义。样条的 英语 单词spline来源于可变形的样条工具,那是一种在 造船 和 工程制图 时用来画出光滑形状的工具。在中国大陆,早期曾经被称做“齿函数”。后来因为工程学术语中“放样”一词而得名。
在 插值 问题中,样条插值通常比 多项式插值 好用。用低阶的样条插值能产生和高阶的多项式插值类似的效果,并且可以避免被称为 龙格现象 的数值不稳定的出现。并且低阶的样条插值还具有“保凸”的重要性质。
在 计算机科学 的 计算机辅助设计 和 计算机图形学 中,样条通常是指分段定义的多项式 参数曲线 。由于样条构造简单,使用方便,拟合准确,并能近似 曲线拟合 和交互式曲线设计中复杂的形状,样条是这些领域中曲线的常用表示方法。
scipy.interpolate.splrep(x,y,w = None,xb = None,xe = None,k = 3,task = 0,s = None,t = None,full_output = 0,per = 0,quiet = 1 )
找到一维曲线的B样条曲线表示。
给定数据点集,确定区间上度k的平滑样条近似。(x[i], y[i])xb = x = xe
x,y: array_like
定义曲线y = f(x)的数据点。
w: array_like,optional
权重的严格正秩1数组,其长度与x和y相同。权重用于计算加权最小二乘样条拟合。如果y值中的误差具有矢量d给出的标准偏差,则w应为1 / d。默认值为1(len(x))。
xb, xe:float, optional
适合的间隔。如果为None,则它们分别默认为x [0]和x [-1]。
k: int,optional
花键拟合的程度。建议使用三次样条。甚至应避免使用k值,尤其是在s值小的情况下。1 = k = 5
task:{1, 0, -1}, optional
如果task == 0,则在给定的平滑因子s下找到t和c。
如果task == 1,则找到t和c作为平滑因子s的另一个值。对于同一组数据,必须先前有一个task = 0或task = 1的调用(t将存储为内部使用)
如果task = -1,则找到给定结点t的加权最小二乘样条曲线。这些应该是内部结,因为两端的结将自动添加。
s:float, optional
平滑条件。满足以下条件来确定平滑度:sum((w (y-g)) * 2,axis = 0)= s其中g(x)是(x,y)的平滑插值。用户可以使用s来控制贴合度和贴合度之间的权衡。较大的s表示更平滑,而较小的s表示较不平滑。s的推荐值取决于权重w。如果权重代表y的标准偏差的倒数,则应在(m-sqrt(2 * m),m + sqrt(2 * m))范围内找到一个好的s值,其中m是x,y和w中的数据点。默认值:如果提供了权重,则s = m-sqrt(2 * m)。如果未提供权重,则s = 0.0(内插)。
t:array_like, optional
任务= -1所需的结。如果给出,则任务自动设置为-1。
f:full_outputbool, optional
如果非零,则返回可选输出。
per:bool, optional
如果非零,则将数据点视为周期为x [m-1]-x [0]的周期,然后返回平滑的周期样条近似。不使用y [m-1]和w [m-1]的值。
quiet:bool, optional
非零以禁止显示消息。不推荐使用此参数;请改用标准的Python警告过滤器。
Returns:
tck:tuple
元组(t,c,k),包含结向量,B样条系数和样条度。
fp:array, optional
样条近似值的平方残差的加权总和。
ier:int, optional
有关splrep成功的整数标志。如果ier = 0,则表示成功。如果[1,2,3]中的ier发生错误,但未引发。否则会引发错误。
msg:str, optional
对应于整数标志ier的消息。
下面插值一个函数
气象 python 二维线性插值
scipy.interpolate.griddata(points, values, xi, method='linear', fill_value=nan, rescale=False)
官网:
一维数组,shape为(n,) ,是需要插值的变量数据
如果需要插值的变量var是一个多维数组,则需要转换成一维的
方法:var.ravel()
values的坐标,shape为(n,D),第一维需要与values长度相同,
D就是values的坐标轴个数
如果是在地图上,D为2,分别是lon、lat,是values中对应的每个数据的lat和lon
插值过后的新的坐标,shape为(m, D) ,第二维与points的第二维相同
插值方法,有 ‘linear’, ‘nearest’, ‘cubic’
nearest:返回最接近插值点的数据点的值
linear:线性插值
cubic:三次样条
用于填充输入点凸包之外的请求点的值。如果未提供,则默认值为 nan 。此选项对‘nearest’ 方法无效。
在执行插值之前将点重新缩放到单位立方体。如果某些输入维度具有不可比较的单位并且相差许多数量级,这将很有用。
python的image.nearest代表什么意思
from PIL import Imageimport os.pathimport globdef convertjpg(jpgfile,outdir,width=1280,height=720): img=Image.open(jpgfile) new_img=img.resize((width,height),Image.BILINEAR) new_img.save(os.path.join(outdir,os.path.basename(jpg...
当前标题:python三次样条函数 三次样条插值 python
网站URL:http://scyanting.com/article/hejjpg.html