pcapython函数 python中pca函数
PCA(主成分分析)python实现
回顾了下PCA的步骤,并用python实现。深刻的发现当年学的特征值、特征向量好强大。
创新互联建站提供成都网站设计、成都做网站、网页设计,成都品牌网站建设,1元广告等致力于企业网站建设与公司网站制作,十余年的网站开发和建站经验,助力企业信息化建设,成功案例突破1000+,是您实现网站建设的好选择.
PCA是一种无监督的学习方式,是一种很常用的降维方法。在数据信息损失最小的情况下,将数据的特征数量由n,通过映射到另一个空间的方式,变为k(kn)。
这里用一个2维的数据来说明PCA,选择2维的数据是因为2维的比较容易画图。
这是数据:
画个图看看分布情况:
协方差的定义为:
假设n为数据的特征数,那么协方差矩阵M, 为一个n n的矩阵,其中Mij为第i和第j个特征的协方差,对角线是各个特征的方差。
在我们的数据中,n=2,所以协方差矩阵是2 2的,
通过numpy我们可以很方便的得到:
得到cov的结果为:
array([[ 0.61655556, 0.61544444],
[ 0.61544444, 0.71655556]])
由于我们之前已经做过normalization,因此对于我们来说,
这个矩阵就是 data*data的转置矩阵。
得到结果:
matrix([[ 5.549, 5.539],
[ 5.539, 6.449]])
我们发现,其实协方差矩阵和散度矩阵关系密切,散度矩阵 就是协方差矩阵乘以(总数据量-1)。因此他们的 特征根 和 特征向量 是一样的。这里值得注意的一点就是,散度矩阵是 SVD奇异值分解 的一步,因此PCA和SVD是有很大联系的,他们的关系这里就不详细谈了,以后有机会再写下。
用numpy计算特征根和特征向量很简单,
但是他们代表的意义非常有意思,让我们将特征向量加到我们原来的图里:
其中红线就是特征向量。有几点值得注意:
蓝色的三角形就是经过坐标变换后得到的新点,其实他就是红色原点投影到红线、蓝线形成的。
得到特征值和特征向量之后,我们可以根据 特征值 的大小,从大到小的选择K个特征值对应的特征向量。
这个用python的实现也很简单:
从eig_pairs选取前k个特征向量就行。这里,我们只有两个特征向量,选一个最大的。
主要将原来的数据乘以经过筛选的特征向量组成的特征矩阵之后,就可以得到新的数据了。
output:
数据果然变成了一维的数据。
最后我们通过画图来理解下数据经过PCA到底发生了什么。
绿色的五角星是PCA处理过后得到的一维数据,为了能跟以前的图对比,将他们的高度定位1.2,其实就是红色圆点投影到蓝色线之后形成的点。这就是PCA,通过选择特征根向量,形成新的坐标系,然后数据投影到这个新的坐标系,在尽可能少的丢失信息的基础上实现降维。
通过上述几步的处理,我们简单的实现了PCA第一个2维数据的处理,但是原理就是这样,我们可以很轻易的就依此实现多维的。
用sklearn的PCA与我们的pca做个比较:
得到结果:
用我们的pca试试
得到结果:
完全一致,完美~
值得一提的是,sklearn中PCA的实现,用了部分SVD的结果,果然他们因缘匪浅。
python pca怎么得到主成份
一般步骤来实现PCA算法
(1)零均值化
假如原始数据集为矩阵dataMat,dataMat中每一行代表一个样本,每一列代表同一个特征。零均值化就是求每一列的平均值,然后该列上的所有数都减去这个均值。也就是说,这里零均值化是对每一个特征而言的,零均值化都,每个特征的均值变成0。实现代码如下:
[python] view plain copy
def zeroMean(dataMat):
meanVal=np.mean(dataMat,axis=0) #按列求均值,即求各个特征的均值
newData=dataMat-meanVal
return newData,meanVal
函数中用numpy中的mean方法来求均值,axis=0表示按列求均值。
该函数返回两个变量,newData是零均值化后的数据,meanVal是每个特征的均值,是给后面重构数据用的。
(2)求协方差矩阵
[python] view plain copy
newData,meanVal=zeroMean(dataMat)
covMat=np.cov(newData,rowvar=0)
numpy中的cov函数用于求协方差矩阵,参数rowvar很重要!若rowvar=0,说明传入的数据一行代表一个样本,若非0,说明传入的数据一列代表一个样本。因为newData每一行代表一个样本,所以将rowvar设置为0。
covMat即所求的协方差矩阵。
(3)求特征值、特征矩阵
调用numpy中的线性代数模块linalg中的eig函数,可以直接由covMat求得特征值和特征向量:
[python] view plain copy
eigVals,eigVects=np.linalg.eig(np.mat(covMat))
eigVals存放特征值,行向量。
eigVects存放特征向量,每一列带别一个特征向量。
特征值和特征向量是一一对应的
(4)保留主要的成分[即保留值比较大的前n个特征]
第三步得到了特征值向量eigVals,假设里面有m个特征值,我们可以对其排序,排在前面的n个特征值所对应的特征向量就是我们要保留的,它们组成了新的特征空间的一组基n_eigVect。将零均值化后的数据乘以n_eigVect就可以得到降维后的数据。代码如下:
[python] view plain copy
eigValIndice=np.argsort(eigVals) #对特征值从小到大排序
n_eigValIndice=eigValIndice[-1:-(n+1):-1] #最大的n个特征值的下标
n_eigVect=eigVects[:,n_eigValIndice] #最大的n个特征值对应的特征向量
lowDDataMat=newData*n_eigVect #低维特征空间的数据
reconMat=(lowDDataMat*n_eigVect.T)+meanVal #重构数据
return lowDDataMat,reconMat
代码中有几点要说明一下,首先argsort对特征值是从小到大排序的,那么最大的n个特征值就排在后面,所以eigValIndice[-1:-(n+1):-1]就取出这个n个特征值对应的下标。【python里面,list[a:b:c]代表从下标a开始到b,步长为c。】
python3.5做分类时,混淆矩阵加在哪一步
preface:做着最近的任务,对数据处理,做些简单的提特征,用机器学习算法跑下程序得出结果,看看哪些特征的组合较好,这一系列流程必然要用到很多函数,故将自己常用函数记录上。应该说这些函数基本上都会用到,像是数据预处理,处理完了后特征提取、降维、训练预测、通过混淆矩阵看分类效果,得出报告。
1.输入
从数据集开始,提取特征转化为有标签的数据集,转为向量。拆分成训练集和测试集,这里不多讲,在上一篇博客中谈到用StratifiedKFold()函数即可。在训练集中有data和target开始。
2.处理
[python] view plain copy
def my_preprocessing(train_data):
from sklearn import preprocessing
X_normalized = preprocessing.normalize(train_data ,norm = "l2",axis=0)#使用l2范式,对特征列进行正则
return X_normalized
def my_feature_selection(data, target):
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
data_new = SelectKBest(chi2, k= 50).fit_transform(data,target)
return data_new
def my_PCA(data):#data without target, just train data, withou train target.
from sklearn import decomposition
pca_sklearn = decomposition.PCA()
pca_sklearn.fit(data)
main_var = pca_sklearn.explained_variance_
print sum(main_var)*0.9
import matplotlib.pyplot as plt
n = 15
plt.plot(main_var[:n])
plt.show()
def clf_train(data,target):
from sklearn import svm
#from sklearn.linear_model import LogisticRegression
clf = svm.SVC(C=100,kernel="rbf",gamma=0.001)
clf.fit(data,target)
#clf_LR = LogisticRegression()
#clf_LR.fit(x_train, y_train)
#y_pred_LR = clf_LR.predict(x_test)
return clf
def my_confusion_matrix(y_true, y_pred):
from sklearn.metrics import confusion_matrix
labels = list(set(y_true))
conf_mat = confusion_matrix(y_true, y_pred, labels = labels)
print "confusion_matrix(left labels: y_true, up labels: y_pred):"
print "labels\t",
for i in range(len(labels)):
print labels[i],"\t",
for i in range(len(conf_mat)):
print i,"\t",
for j in range(len(conf_mat[i])):
print conf_mat[i][j],'\t',
def my_classification_report(y_true, y_pred):
from sklearn.metrics import classification_report
print "classification_report(left: labels):"
print classification_report(y_true, y_pred)
my_preprocess()函数:
主要使用sklearn的preprocessing函数中的normalize()函数,默认参数为l2范式,对特征列进行正则处理。即每一个样例,处理标签,每行的平方和为1.
my_feature_selection()函数:
使用sklearn的feature_selection函数中SelectKBest()函数和chi2()函数,若是用词袋提取了很多维的稀疏特征,有必要使用卡方选取前k个有效的特征。
my_PCA()函数:
主要用来观察前多少个特征是主要特征,并且画图。看看前多少个特征占据主要部分。
clf_train()函数:
可用多种机器学习算法,如SVM, LR, RF, GBDT等等很多,其中像SVM需要调参数的,有专门调试参数的函数如StratifiedKFold()(见前几篇博客)。以达到最优。
my_confusion_matrix()函数:
主要是针对预测出来的结果,和原来的结果对比,算出混淆矩阵,不必自己计算。其对每个类别的混淆矩阵都计算出来了,并且labels参数默认是排序了的。
my_classification_report()函数:
主要通过sklearn.metrics函数中的classification_report()函数,针对每个类别给出详细的准确率、召回率和F-值这三个参数和宏平均值,用来评价算法好坏。另外ROC曲线的话,需要是对二分类才可以。多类别似乎不行。
主要参考sklearn官网
如何用python实现pca降维
首先2个包:
import numpy as np
from sklearn.decomposition import PCA
然后一个m x n 的矩阵,n为维度,这里设为x。
n_components = 12 是自己可以设的。
pca = PCA(n_components=12)
pca.fit(x)
PCA(copy=True, iterated_power='auto', n_components=12, random_state=None,
svd_solver='auto', tol=0.0, whiten=False)
float_formatter = lambda x: "%.2f" % x
np.set_printoptions(formatter={'float_kind':float_formatter})
print 'explained variance ratio:'
print pca.explained_variance_ratio_
print 'cumulative sum:'
print pca.explained_variance_ratio_.cumsum()
python培训入门教程?怎样入门呢?
python作为一个编程语言,具有与其他编程语言同等的能力。冠冕堂皇地讲,是所有语言都是图灵等价的。不过python作为一门语言,尤其独特的优点,简单易学,内置了很多库。也很容易扩展。Python培训课程如何学?
可以选一本通俗易懂的书,找一个好的视频资料,然后自己装一个IDE工具开始边学边写。下面我具体来讲讲:
1.找一本靠谱的书,难度一定要是入门级别,千万不能太复杂,不要一下子陷进去,会打乱节奏,学东西要循序渐进,不能一口吃个胖子.打个比方,学过java的同学都听过大名鼎鼎的thinking in java,这边书很厚很全,若一上来就学,肯定会吃力,时间长了就会失去兴趣,因此对初学者来说,一定要找一本通熟易懂的,简单的书。入门的书非常关键。
入门的书很多,但是我个人强烈推荐《A Byte of Python》,这本书我读了2遍,作者写作思路非常清晰,对每个知识点讲解很到位,不多不少。对初学者来说,力道刚刚好。而且是全英文,对提高自己的英语水平也很有帮助。
网上有人会推荐《笨办法学Python》,我个人觉得这本书没有《A Byte of Python》好 。一般有一些编程基本,我建议直接看《A Byte of Python》。这本书的销量已经破百万了,而且在豆瓣上点评有8.8,可谓是入门级的神书.电子版大家可以在CSDN 搜一下就有,都是高清的。
2.找一个靠谱的师傅。Python编程是一个十分系统的技术体系,有时候光靠看书和网上的视频,只能是一知半解,遇到问题,没有人给你讲解其中的原理和流程,那么对于整个技术点的理解就永远不会通透。况且,编程不只是知识,还涉及到做具体的项目,在做项目中,如果有人带,进步才是最神速的。
3.多编写程序,这似乎是废话,但是确实是一句实话。学编程一定要亲身去编写,没有什么捷径。一开始哪怕你把书里面的例子一字不落敲一遍,也好过你只是去看书,而不动手。
而且学python 最好是坚持编,每天抽小半个小时,学一些知识点,不断坚持.快的话几个星期基本就能入门了。
如何用pca做人脸识别 python实现.带客户端的
基于特征脸(PCA)的人脸识别方法
特征脸方法是基于KL变换的人脸识别方法,KL变换是图像压缩的一种最优正交变换。高维的图像空间经过KL变换后得到一组新的正交基,保留其中重要的正交基,由这些基可以张成低维线性空间。如果假设人脸在这些低维线性空间的投影具有可分性,就可以将这些投影用作识别的特征矢量,这就是特征脸方法的基本思想。这些方法需要较多的训练样本,而且完全是基于图像灰度的统计特性的。目前有一些改进型的特征脸方法。
比如人脸灰度照片40x40=1600个像素点,用每个像素的灰度值组成的矩阵代表这个人的人脸。那么这个人人脸就要1600 个特征。拿一堆这样的样本过来做pca,抽取得到的只是在统计意义下能代表某个样本的几个特征。
人脸识别可以采用神经网 络深度学习的思路,国内的ColorReco在这边有比较多的案例。
当前名称:pcapython函数 python中pca函数
网站路径:http://scyanting.com/article/hepsho.html