桶排序java代码 桶排序c++代码

java 编写一个程序,输入3个整数,然后程序将对这三个整数按照从大到小进行排列

输入三个数你可以这样

乐亭网站建设公司创新互联,乐亭网站设计制作,有大型网站制作公司丰富经验。已为乐亭上1000家提供企业网站建设服务。企业网站搭建\外贸网站建设要多少钱,请找那个售后服务好的乐亭做网站的公司定做!

Scanner in=new Scanner(System.in);

int a=in.nextInt();

Scanner in=new Scanner(System.in);

int b=in.nextInt();

Scanner in=new Scanner(System.in);

int c=in.nextInt();

然后对三个数进行比较。

int tmp=0;

if(ab){

tmp=a;

a=b;

b=tmp;

}

if(ac){

tmp=a;

a=c;

c=tmp;

}

if(bc){

tmp=b;

b=c;

c=tmp;

}

System.out.println(a+" "+b+" "+c);

这就可以了,自己想想动动脑子才能灵活运用,如果只是给你代码,你只会复制粘贴。

java怎么实现排序

Java实现几种常见排序方法

日常操作中常见的排序方法有:冒泡排序、快速排序、选择排序、插入排序、希尔排序,甚至还有基数排序、鸡尾酒排序、桶排序、鸽巢排序、归并排序等。

以下常见算法的定义

1. 插入排序:插入排序基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为O(n^2)。是稳定的排序方法。插入排序的基本思想是:每步将一个待排序的纪录,按其关键码值的大小插入前面已经排序的文件中适当位置上,直到全部插入完为止。

2. 选择排序:选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理是每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完。 选择排序是不稳定的排序方法。

3. 冒泡排序:冒泡排序(Bubble Sort),是一种计算机科学领域的较简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越大的元素会经由交换慢慢“浮”到数列的顶端。

4. 快速排序:快速排序(Quicksort)是对冒泡排序的一种改进。它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

5. 归并排序:归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。

6. 希尔排序:希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。

Java排序一共有几种?

日常操作中,常见的排序方法有:冒泡排序、快速排序、选择排序、插入排序、希尔排序,甚至还有基数排序、鸡尾酒排序、桶排序、鸽巢排序、归并排序等。

各类排序方法代码如图:

十大经典排序算法(动图演示) 之 桶排序

9、桶排序(Bucket Sort)

桶排序是计数排序的升级版。它利用了函数的映射关系,高效与否的关键就在于这个映射函数的确定。桶排序 (Bucket sort)的工作的原理:假设输入数据服从均匀分布,将数据分到有限数量的桶里,每个桶再分别排序(有可能再使用别的排序算法或是以递归方式继续使用桶排序进行排)。

9.1 算法描述

9.2 图片演示

9.3 代码实现

9.4 算法分析

桶排序最好情况下使用线性时间O(n),桶排序的时间复杂度,取决与对各个桶之间数据进行排序的时间复杂度,因为其它部分的时间复杂度都为O(n)。很显然,桶划分的越小,各个桶之间的数据越少,排序所用的时间也会越少。但相应的空间消耗就会增大。

文章转自

java 桶排序 输入n个0~1000之间的整数,将它们从大到小排序。谢谢啦

import java.util.Scanner;

public class Help {

public static void main(String[] args) {

Scanner sc=new Scanner(System.in);

int size=sc.nextInt();//记录次数n

int[] s=new int[size];//储存数字的数组

for(int i=0;isize;i++){

int p=sc.nextInt();

if(0pp1000){//进行判断

s[i]=p;

}

else{

System.out.println("您输入的数字非法!");}

}

Arrays.sort(s);//从小到大排序

for(int i=0;i=(int)size/2;i++){//再将顺序倒过来

int l=s.length;

int ss=s[i];

s[i]=s[l-1-i];

s[l-1-i]=ss;

}

for(int i=0;isize;i++) {

System.out.println(s[i]);

}

}

}

不懂再问哦~~~

桶排序的算法

桶排序算法要求,数据的长度必须完全一样,程序过程要产生长度相同的数据,使用下面的方法:Data=rand()/10000+10000上面提到的,每次下一次的扫描顺序是按照上次扫描的结果来的,所以设计上提供相同的两个桶数据结构。前一个保存每一次扫描的结果供下次调用,另外一个临时拷贝前一次扫描的结果提供给前一个调用。

数据结构设计:链表可以采用很多种方式实现,通常的方法是动态申请内存建立结点,但是针对这个算法,桶里面的链表结果每次扫描后都不同,就有很多链表的分离和重建。如果使用动态分配内存,则由于指针的使用,安全性低。所以,笔者设计时使用了数组来模拟链表(当然牺牲了部分的空间,但是操作却是简单了很多,稳定性也大大提高了)。共十个桶,所以建立一个二维数组,行向量的下标0—9代表了10个桶,每个行形成的一维数组则是桶的空间。

平均情况下桶排序以线性时间运行。像基数排序一样,桶排序也对输入作了某种假设, 因而运行得很快。具 体来说,基数排序假设输入是由一个小范围内的整数构成,而桶排序则 假设输入由一个随机过程产生,该过程将元素一致地分布在区间[0,1)上。 桶排序的思想就是把区间[0,1)划分成n个相同大小的子区间,或称桶,然后将n个输入数分布到各个桶中去。因为输入数均匀分布在[0,1)上,所以一般不会有很多数落在一个桶中的情况。为得到结果,先对各个桶中的数进行排序,然后按次序把各桶中的元素列出来即可。

在桶排序算法的代码中,假设输入是含n个元素的数组A,且每个元素满足0≤ A[i]1。另外还需要一个辅助数组B[O..n-1]来存放链表实现的桶,并假设可以用某种机制来维护这些表。

桶排序的算法如下(伪代码表示),其中floor(x)是地板函数,表示不超过x的最大整数。

procedure Bin_Sort(var A:List);begin

n:=length(A);

for i:=1 to n do

将A[i]插到表B[floor(n*A[i])]中;

for i:=0 to n-1 do

用插入排序对表B[i]进行排序;

将表B[0],B[1],...,B[n-1]按顺序合并;

end;

右图演示了桶排序作用于有10个数的输入数组上的操作过程。(a)输入数组A[1..10]。(b)在该算法的第5行后的有序表(桶)数组B[0..9]。桶i中存放了区间[i/10,(i+1)/10]上的值。排序输出由表B[O]、B[1]、...、B[9]的按序并置构成。

要说明这个算法能正确地工作,看两个元素A[i]和A[j]。如果它们落在同一个桶中,则它们在输出序列中有着正确的相对次序,因为它们所在的桶是采用插入排序的。现假设它们落到不同的桶中,设分别为B[i']和B[j']。不失一般性,假设i' i'=floor(n*A[i])≥floor(n*A[j])=j' 得矛盾 (因为i' 来分析算法的运行时间。除第5行外,所有各行在最坏情况的时间都是O(n)。第5行中检查所有桶的时间是O(n)。分析中唯一有趣的部分就在于第5行中插人排序所花的时间。

为分析插人排序的时间代价,设ni为表示桶B[i]中元素个数的随机变量。因为插入排序以二次时间运行,故为排序桶B[i]中元素的期望时间为E[O(ni2)]=O(E[ni2]),对各个桶中的所有元素排序的总期望时间为:O(n)。(1) 为了求这个和式,要确定每个随机变量ni的分布。我们共有n个元素,n个桶。某个元素落到桶B[i]的概率为l/n,因为每个桶对应于区间[0,1)的l/n。这种情况与投球的例子很类似:有n个球 (元素)和n个盒子 (桶),每次投球都是独立的,且以概率p=1/n落到任一桶中。这样,ni=k的概率就服从二项分布B(k;n,p),其期望值为E[ni]=np=1,方差V[ni]=np(1-p)=1-1/n。对任意随机变量X,有右图所示表达式。

(2)将这个界用到(1)式上,得出桶排序中的插人排序的期望运行时间为O(n)。因而,整个桶排序的期望运行时间就是线性的。


网站名称:桶排序java代码 桶排序c++代码
文章起源:http://scyanting.com/article/hgiosd.html