go语言协程端口号 go语言 串口
2020-08-20:GO语言中的协程与Python中的协程的区别?
福哥答案2020-08-20:
创新互联建站专业为企业提供扬州网站建设、扬州做网站、扬州网站设计、扬州网站制作等企业网站建设、网页设计与制作、扬州企业网站模板建站服务,十载扬州做网站经验,不只是建网站,更提供有价值的思路和整体网络服务。
1.golang的协程是基于gpm机制,是可以多核多线程的。Python的协程是eventloop模型(IO多路复用技术)实现,协程是严格的 1:N 关系,也就是一个线程对应了多个协程。虽然可以实现异步I/O,但是不能有效利用多核(GIL)。
2.golang用go func。python用import asyncio,async/await表达式。
评论
Golang net/http 爬虫[1]
上周从零学习了golang,语法简单关键字少,写个爬虫熟悉一下语法结构。
首先选用了原生的net/http包,基本上涵盖了所有的get/post请求,各种参数都可以设置,网上google到html页面解析goquery神器,很轻松就可以解决页面解析问题。
首先就写了个爬取汇率的爬虫。然后重写之前php的一个请求类,请求类的逻辑有点混乱不清晰,往往把两个不同的功能合并到一起写,粒度大,后来发现了一个好用的框架——colly,之后再试试好不好用
Windows 10 Golang
依赖包:goquery
较常用的方法有Find和Each
爬取中国银行的汇率牌价表,golang依赖net/http包和goquery包
唯一的难点是对于goquery方法的使用,需要阅读官方文档:
使用原生的net/http包基本上可以解决大多数的网页请求,使用goquery可以解决页面解析问题
可以利用golang的协程特性进行异步多协程爬取
增加安全性可以通过几个方面进行改进:
1.首先可以限制爬虫的爬取速度
2.每次对网页的请求都随机选用一个客户端
3.选用IP代理池,防止IP误封(及限制ip访问次数)
构造请求代理ip网站的链接→获取网页内容→ 提取网页中IP地址和端口号→验证IP的有效性并存储
轻量级反爬虫方案
浅谈JSP
golang带json的Http请求
Get/Post
HTTP请求中的Form Data和Request Payload的区别
HTTP Json请求
net/http:
golang HTTP操作
python建立爬虫代理ip池
爬虫黑科技之让你的爬虫程序更像人类用户的行为
特点:事件监听,通过callback执行事件处理
基于colly开发的web管理界面
Golang 线程和协程的区别
线程:
多线程是为了解决CPU利用率的问题,线程则是为了减少上下文切换时的开销,进程和线程在Linux中没有本质区别,最大的不同就是进程有自己独立的内存空间,而线程是共享内存空间。
在进程切换时需要转换内存地址空间,而线程切换没有这个动作,所以线程切换比进程切换代价要小得多。
协程:
想要简单,又要性能高,协程就可以达到我们的目的,它是用户视角的一种抽象,操作系统并没有这个概念,主要思想是在用户态实现调度算法,用少量线程完成大量任务的调度。
Goroutine是GO语言实现的协程,其特点是在语言层面就支持,使用起来十分方便,它的核心是MPG调度模型:M即内核线程;P即处理器,用来执行Goroutine,它维护了本地可运行队列;G即Goroutine,代码和数据结构;S及调度器,维护M和P的信息。
go面试题整理(附带部分自己的解答)
原文:【 】
如果有解答的不对的,麻烦各位在评论写出来~
go的调度原理是基于GMP模型,G代表一个goroutine,不限制数量;M=machine,代表一个线程,最大1万,所有G任务还是在M上执行;P=processor代表一个处理器,每一个允许的M都会绑定一个G,默认与逻辑CPU数量相等(通过runtime.GOMAXPROCS(runtime.NumCPU())设置)。
go调用过程:
可以能,也可以不能。
因为go存在不能使用==判断类型:map、slice,如果struct包含这些类型的字段,则不能比较。
这两种类型也不能作为map的key。
类似栈操作,后进先出。
因为go的return是一个非原子性操作,比如语句 return i ,实际上分两步进行,即将i值存入栈中作为返回值,然后执行跳转,而defer的执行时机正是跳转前,所以说defer执行时还是有机会操作返回值的。
select的case的表达式必须是一个channel类型,所有case都会被求值,求值顺序自上而下,从左至右。如果多个case可以完成,则会随机执行一个case,如果有default分支,则执行default分支语句。如果连default都没有,则select语句会一直阻塞,直到至少有一个IO操作可以进行。
break关键字可跳出select的执行。
goroutine管理、信息传递。context的意思是上下文,在线程、协程中都有这个概念,它指的是程序单元的一个运行状态、现场、快照,包含。context在多个goroutine中是并发安全的。
应用场景:
例子参考:
waitgroup
channel
len:切片的长度,访问时间复杂度为O(1),go的slice底层是对数组的引用。
cap:切片的容量,扩容是以这个值为标准。默认扩容是2倍,当达到1024的长度后,按1.25倍。
扩容:每次扩容slice底层都将先分配新的容量的内存空间,再将老的数组拷贝到新的内存空间,因为这个操作不是并发安全的。所以并发进行append操作,读到内存中的老数组可能为同一个,最终导致append的数据丢失。
共享:slice的底层是对数组的引用,因此如果两个切片引用了同一个数组片段,就会形成共享底层数组。当sliec发生内存的重新分配(如扩容)时,会对共享进行隔断。详细见下面例子:
make([]Type,len,cap)
map的底层是hash table(hmap类型),对key值进行了hash,并将结果的低八位用于确定key/value存在于哪个bucket(bmap类型)。再将高八位与bucket的tophash进行依次比较,确定是否存在。出现hash冲撞时,会通过bucket的overflow指向另一个bucket,形成一个单向链表。每个bucket存储8个键值对。
如果要实现map的顺序读取,需要使用一个slice来存储map的key并按照顺序进行排序。
利用map,如果要求并发安全,就用sync.map
要注意下set中的delete函数需要使用 delete(map) 来实现,但是这个并不会释放内存,除非value也是一个子map。当进行多次delete后,可以使用make来重建map。
使用sync.Map来管理topic,用channel来做队列。
参考:
多路归并法:
pre class="vditor-reset" placeholder="" contenteditable="true" spellcheck="false"p data-block="0"(1)假设有K路a href=""数据流/a,流内部是有序的,且流间同为升序或降序;
/pp data-block="0"(2)首先读取每个流的第一个数,如果已经EOF,pass;
/pp data-block="0"(3)将有效的k(k可能小于K)个数比较,选出最小的那路mink,输出,读取mink的下一个;
/pp data-block="0"(4)直到所有K路都EOF。
/p/pre
假设文件又1个G,内存只有256M,无法将1个G的文件全部读到内存进行排序。
第一步:
可以分为10段读取,每段读取100M的数据并排序好写入硬盘。
假设写入后的文件为A,B,C...10
第二步:
将A,B,C...10的第一个字符拿出来,对这10个字符进行排序,并将结果写入硬盘,同时记录被写入的字符的文件指针P。
第三步:
将刚刚排序好的9个字符再加上从指针P读取到的P+1位数据进行排序,并写入硬盘。
重复二、三步骤。
go文件读写参考:
保证排序前两个相等的数其在序列的前后位置顺序和排序后它们两个的前后位置顺序相同的排序叫稳定排序。
快速排序、希尔排序、堆排序、直接选择排序不是稳定的排序算法。
基数排序、冒泡排序、直接插入排序、折半插入排序、归并排序是稳定的排序算法。
参考:
head只请求页面的首部。多用来判断网页是否被修改和超链接的有效性。
get请求页面信息,并返回实例的主体。
参考:
401:未授权的访问。
403: 拒绝访问。
普通的http连接是客户端连接上服务端,然后结束请求后,由客户端或者服务端进行http连接的关闭。下次再发送请求的时候,客户端再发起一个连接,传送数据,关闭连接。这么个流程反复。但是一旦客户端发送connection:keep-alive头给服务端,且服务端也接受这个keep-alive的话,两边对上暗号,这个连接就可以复用了,一个http处理完之后,另外一个http数据直接从这个连接走了。减少新建和断开TCP连接的消耗。这个可以在Nginx设置,
这个keepalive_timout时间值意味着:一个http产生的tcp连接在传送完最后一个响应后,还需要hold住keepalive_timeout秒后,才开始关闭这个连接。
特别注意TCP层的keep alive和http不是一个意思。TCP的是指:tcp连接建立后,如果客户端很长一段时间不发送消息,当连接很久没有收到报文,tcp会主动发送一个为空的报文(侦测包)给对方,如果对方收到了并且回复了,证明对方还在。如果对方没有报文返回,重试多次之后则确认连接丢失,断开连接。
tcp的keep alive可通过
net.ipv4.tcp_keepalive_intvl = 75 // 当探测没有确认时,重新发送探测的频度。缺省是75秒。
net.ipv4.tcp_keepalive_probes = 9 //在认定连接失效之前,发送多少个TCP的keepalive探测包。缺省值是9。这个值乘以tcp_keepalive_intvl之后决定了,一个连接发送了keepalive之后可以有多少时间没有回应
net.ipv4.tcp_keepalive_time = 7200 //当keepalive起用的时候,TCP发送keepalive消息的频度。缺省是2小时。一般设置为30分钟1800
修改:
可以
tcp是面向连接的,upd是无连接状态的。
udp相比tcp没有建立连接的过程,所以更快,同时也更安全,不容易被攻击。upd没有阻塞控制,因此出现网络阻塞不会使源主机的发送效率降低。upd支持一对多,多对多等,tcp是点对点传输。tcp首部开销20字节,udp8字节。
udp使用场景:视频通话、im聊天等。
time-wait表示客户端等待服务端返回关闭信息的状态,closed_wait表示服务端得知客户端想要关闭连接,进入半关闭状态并返回一段TCP报文。
time-wait作用:
解决办法:
close_wait:
被动关闭,通常是由于客户端忘记关闭tcp连接导致。
根据业务来啊~
重要指标是cardinality(不重复数量),这个数量/总行数如果过小(趋近于0)代表索引基本没意义,比如sex性别这种。
另外查询不要使用select *,根据select的条件+where条件做组合索引,尽量实现覆盖索引,避免回表。
僵尸进程:
即子进程先于父进程退出后,子进程的PCB需要其父进程释放,但是父进程并没有释放子进程的PCB,这样的子进程就称为僵尸进程,僵尸进程实际上是一个已经死掉的进程。
孤儿进程:
一个父进程退出,而它的一个或多个子进程还在运行,那么那些子进程将成为孤儿进程。孤儿进程将被init进程(进程号为1)所收养,并由init进程对它们完成状态收集工作。
子进程死亡需要父进程来处理,那么意味着正常的进程应该是子进程先于父进程死亡。当父进程先于子进程死亡时,子进程死亡时没父进程处理,这个死亡的子进程就是孤儿进程。
但孤儿进程与僵尸进程不同的是,由于父进程已经死亡,系统会帮助父进程回收处理孤儿进程。所以孤儿进程实际上是不占用资源的,因为它终究是被系统回收了。不会像僵尸进程那样占用ID,损害运行系统。
原文链接:
产生死锁的四个必要条件:
(1) 互斥条件:一个资源每次只能被一个进程使用。
(2) 请求与保持条件:一个进程因请求资源而阻塞时,对已获得的资源保持不放。
(3) 不剥夺条件:进程已获得的资源,在末使用完之前,不能强行剥夺。
(4) 循环等待条件:若干进程之间形成一种头尾相接的循环等待资源关系。
避免方法:
端口占用:lsof -i:端口号 或者 nestat
cpu、内存占用:top
发送信号:kill -l 列出所有信号,然后用 kill [信号变化] [进程号]来执行。如kill -9 453。强制杀死453进程
git log:查看提交记录
git diff :查看变更记录
git merge:目标分支改变,而源分支保持原样。优点:保留提交历史,保留分支结构。但会有大量的merge记录
git rebase:将修改拼接到最新,复杂的记录变得优雅,单个操作变得(revert)很简单;缺点:
git revert:反做指定版本,会新生成一个版本
git reset:重置到某个版本,中间版本全部丢失
etcd、Consul
pprof
节省空间(非叶子节点不存储数据,相对b tree的优势),减少I/O次数(节省的空间全部存指针地址,让树变的矮胖),范围查找方便(相对hash的优势)。
explain
其他的见:
runtime2.go 中关于 p 的定义: 其中 runnext 指针决定了下一个要运行的 g,根据英文的注释大致意思是说:
所以当设置 runtime.GOMAXPROCS(1) 时,此时只有一个 P,创建的 g 依次加入 P, 当最后一个即 i==9 时,加入的最后 一个 g 将会继承当前主 goroutinue 的剩余时间片继续执行,所以会先输出 9, 之后再依次执行 P 队列中其它的 g。
方法一:
方法二:
[图片上传失败...(image-4ef445-1594976286098)]
方法1:to_days,返回给的日期从0开始算的天数。
方法2:data_add。向日期添加指定时间间隔
[图片上传失败...(image-b67b10-1594976286098)]
当前标题:go语言协程端口号 go语言 串口
标题网址:http://scyanting.com/article/hgoigc.html