关于python函数缺失的信息
python数据分析模块:numpy、pandas全解
一维数组情况:
在古田等地区,都构建了全面的区域性战略布局,加强发展的系统性、市场前瞻性、产品创新能力,以专注、极致的服务理念,为客户提供网站设计、网站制作 网站设计制作按需定制开发,公司网站建设,企业网站建设,成都品牌网站建设,全网整合营销推广,成都外贸网站建设公司,古田网站建设费用合理。
二维数组情况:
3参数情况:
2参数情况:
1参数情况:
一维情况:
二维情况:
一维情况:
二维情况:
一维情况:
二维情况:第三个参数指定维度
只查看行数、或者列数
逗号隔开两个索引
某些行
某些列
可以看出append()函数在二维数组中添加元素,结果转为了一维数组。
那怎么保持二维数组呢?可以设置axis参数按行或者按列添加
可以看出先把二维数组降成了一维数组,再在索引为1的位置添加元素。
那么怎么保持在二维添加元素呢? 同样设置axis参数
也分按行和按列删除
标记缺失值: isnan()函数
补充缺失值:
同样axis参数可以指定拼接按行还是按列
2. hstack()函数:以水平堆叠的方式拼接数组
3. vstack()函数:以垂直堆叠的方式拼接数组
第二个参数还可以是数组,指定拆分的位置
hsplit()函数:横向拆成几个数组
vsplit()函数:纵向拆成几个数组
数组与数组之间的运算
数组与数值的运算
可以指定整个数组求和,还是按行或者按列
axis=0:每一列的元素求和
axis=1:每一行的元素求和
axis=0:每一列求均值
axis=1:每一行求均值
axis=0:每一列求最大值
axis=1:每一行求最大值
pandas有两个重要的数据结构对象:Series和DataFrame。
Series是创建一个一维数组对象,会自动生成行标签。
会自动生成行列标签
也可以用字典形式生成数据
在用字典生成数据的基础上,同时指定行标签
例如对下表的数据进行读取
4月是第四个表,我们应把sheet_name参数指定为3;因为索引是从0开始的。
可以看出read_excel()函数自动创建了一个DataFrame对象,同时自动把第一行数据当做列标签。
可以看出不给出header参数时,该参数默认为0。
header=1时结果如下:
header=None时结果如下:
index_col=0时,第0列为列标签
index_col=0时
usecols=[2]:指定第二列
指定多列
数据如下:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-j1SHxY8y-1637655972909)(C:Users14051AppDataRoamingTypora ypora-user-imagesimage-20211114192949607.png)]
nrows=3时
head()函数中参数为空默认前5行
指定head(3)时如下
numpy模块也是shape
查看特定列的书库类型
特定列数据类型转换
先查看一下所有数据
与单行相比,结果显示的格式不一样了
iloc()挑选:
或者给出区间
挑选数据要么标签,要么索引挑选
或者
或者写成区间
标签挑选
或者索引挑选
先查看一下数据
或者用字典一对一修改
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-a6QKIoie-1637655972912)(C:Users14051AppDataRoamingTypora ypora-user-imagesimage-20211123110431201.png)]
isin()函数查看表中是否有该值
查看特定列是否有该值
可以看出上述代码并没有替换,那怎么替换呢?
末尾插入一列
指定插入到哪列
axis参数可以指定删除行还是删除列
指定标签删除
指定索引删除
方法三
指定行标签删除
指定索引删除
方法三:
先查看所有数据
info()函数查看数据类型,还可以查看是否有缺失值
isnull()函数查看是否有缺失值
在numpy模块中用isnan()函数
删除有缺失值的行
删除整行都为缺失值的行: 需要指定how参数
不同列的缺失值设置不同的填充值
默认保留第一个重复值所在的行,删除其他重复值所在的行
保留第一个重复值所在的行
保留最后一个重复值所在的行
是重复的就删除
降序如下
参数指定first时,表示在数据有重复值时,越先出现的数据排名越靠前
获取产品为单肩包的行数据
获取数量60的行数据
获取产品为单肩包 且 数量60 的行数据
获取产品为单肩包 或 数量60 的行数据
stack()函数转换成树形结构
how参数指定外连接
on参数指定按哪一列合并
concat()函数采用 全连接 的方式,没有的数设置为缺失值
重置行标签
效果与concat()一样
末尾添加行元素
指定列求和
指定列求均值
指定列求最值
获取单列的
corr()函数获取相关系数
获取指定列与其他列的相关系数
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-46g9qgQw-1637655972913)(C:Users14051AppDataRoamingTypora ypora-user-imagesimage-20211123135643804.png)]
groupby()函数返回的是一个DataFrameBy对象,该对象包含分组后的数据,但是不能直观地显示出来。
分组后获取指定列的汇总情况
获取多列的汇总情况
获取多列的情况
ta = pd.read_excel(‘相关性分析.xlsx’)
print(data)
corr()函数获取相关系数
获取指定列与其他列的相关系数
[外链图片转存中…(img-46g9qgQw-1637655972913)]
groupby()函数返回的是一个DataFrameBy对象,该对象包含分组后的数据,但是不能直观地显示出来。
分组后获取指定列的汇总情况
获取多列的汇总情况
获取多列的情况
python数据分析需要数据清理吗
1、对数据进行排序df.sort_values()
#读取数据
titanic_survival=pd.read_csv(r"C:Userspythonwandata_minepython_pandas itanic_train.csv")
#用sort_values()函数对指定列排序,默认升序排序,inplace=True表示在原来的df上排序titanic_survival.sort_values(("Age"),inplace=Tru
2、缺失值判断及统计pandas.isnull()、pandas.isnull
空值统计方法一:df.isnull().sum():
#当不指定具体列时,统计整个df的缺失值个数
titanic_survival['Age'].isnull().sum()
通过len()函数统计缺失值
3、缺失值处理
处理缺失值可以分为两类:删除缺失值和缺失值插补。而缺失值插补又分为以下几种:
均值/中位数/众数插补
使用固定值(将缺失值的属性用一个常量代替)
最近邻插补(在记录中找到与缺失值样本最接近的样本的该属性插补)
回归方法(对带有缺失值的变量,根据已有数据和与其有关的其他变量建立拟合模型来预测缺失值)
插值法(利用已知点建立合适的插值函数f(x),未知值由对应点xi求出来近似代替)
下面,我们主要讨论删除缺失值,学习一些pandas缺失值删除的操作。
1)df.dropna(),舍弃含有任意缺失值的行
#等价于titanic_survival.dropna(axis=0) axis=0表示删除行,axis=1表示删除列
dropall=titanic_survival.dropna()
删除含任意空值的行
2)df.dropna()函数删除某个列中含有空值的行
现在这个数据中age、cabin、embarked都有缺失值,如果我们直接使用df.dropna()会删除掉这三列中都有空值的所有行,但是我们希望只删除age列中有空值的数据,那该如何处理呢?
直接使用df.dropna(subset=['column_list'])
drop_age_null=titanic_survival.dropna(subset=["Age"])
删除指定列中含有缺失值的行
pandas自定义函数
Python复制到pta上的代码编译错误
+PTA网站验证码即可。
编译错误的解决方案还有就是可以检查缩进是否按照Python的语法进行了,如果报错行紧邻着函数,检查函数是否缺失了语句。
Python本该存在于函数库的语句调用显示不存在
使用dir(turtle)先查看一下有哪些函数可用,也可以直接输入turtle.c+tab键查看可用的相似指令。如果找不到,建议去看官问,有些函数随版本更新会被废弃或合并。
本文题目:关于python函数缺失的信息
文章起源:http://scyanting.com/article/hhcdpi.html