mysql延时怎么优化 mysql从库延迟优化

mysql出现主从同步延迟有哪些原因

1.从库太多导致复制延迟

创新互联公司主营阳江网站建设的网络公司,主营网站建设方案,app软件定制开发,阳江h5成都微信小程序搭建,阳江网站营销推广欢迎阳江等地区企业咨询

优化:建议从库数量3-5个为宜

2.从库硬件比主库硬件差

优化:提升硬件性能

3.慢SQL语句过多

优化:SQL语句执行时间太长,需要优化SQL语句

4.主从复制的设计问题

优化:主从复制单线程,可以通过多线程IO方案解决;另外MySQL5.6.3支持多线程IO复制。

5.主从库之间的网络延迟

优化:尽量链路短,提升端口带宽

6.主库读写压力大

优化:前端加buffer和缓存。主从延迟不同步:

不管有多延迟,只要不影响业务就没事

7、业务设计缺陷导致延迟影响业务

优化:从库没有数据改读主库

mysql数据库如何优化?谁能给出点具体的解决方案?

1、explain:解释sql的执行计划,后边的sql不执行

2、explain partitions :用于查看存在分区的表的执行计划

3、explain extended:待验证

4、show warnings:

5、show create table:查看表的详细的创建语句,便于用户对表进行优化

6、show indexes :产看表的所有索引,show indexes from table_name,同样也可以从information_schema.statistics表中获得同样的信息。cardinality列很重要,表示数据量。

7、show tables status: 查看数据库表的底层大小以及表结构,同样可以从information_schema.tables表中获得底层表的信息。

8、show [global|session]status:可以查看mysql服务器当前内部状态信息。可以帮助却行mysql服务器的负载的各种指标。默认是session。同information_schema.global_status和information_schema.session_status

9、show [global|session] variables :查看当前mysql系统变量的值,其中一些值能影响到sql语句的执行方式。同information_schema.global_variables和information_schema.session_variables;

10、information_schema:包含的表的数量和mysql的版本有关系。

mysql优化

1,sql的编译顺序

sql 编译顺序 from… on… join… where… order by… group by… having… select…

2,查看sql语句性能:

explain 查询sql语句

3,优化

(1). 最佳作前缀,使用索引顺序(按编译顺序)与定义索引时顺序一致,若该字段有跳过、反序,该字段及后面字段索引失效

(2). where条件中一切不是=的操作大概率会使索引失效,包括in、!=、、is null、计算、函数等等

(3). 查询字段与条件字段不一致时使用子查询,避免临时表出现

(4). 若用了复合索引,尽量使用全部索引字段

(5). 能不查询多字段时,尽量使用索引覆盖

(6). 使用like模糊查询时,按关键字左匹配,即‘x%’,若使用’%x%’,索引失效

(7). or会使全部索引失效

(8). 尽量不要导致类型转换,否则索引失效

(9). 使用order by时,根据表中数据量调整单路还是双路查询,也可以调整buffer区大小:如set_max_length_for_sort_data = 1024 (单位byte)

(10). 避免使用select *…

(11). 分页偏移量大时,尽量使用子查询 select * from tab where id=(select id from tab limit 100000,1) limit 100;

mysql优化:覆盖索引(延迟关联)

我们都知道InnoDB采用的B+ tree来实现索引的,索引又分为主键索引(聚簇索引)和普通索引(二级索引)。

那么我们就来看下 基于主键索引和普通索引的查询有什么区别?

举个栗子:

可以看出我们有一个普通索引k,那么两颗B+树的示意图如下:

[图片上传失败...(image-9b05f7-1597911217600)]

(注:图来自极客时间专栏)

当我们查询** select * from T where k=5 其实会先到k那个索引树上查询k = 5,然后找到对应的id为500,最后回表到主键索引的索引树找返回所需数据。

如果我们查询 select id from T where k=5 **则不需要回表就直接返回。

也就是说,基于非主键索引的查询需要多扫描一棵索引树。因此,我们在应用中应该尽量使用主键查询。

概念如上,这里我们还是用例子来说明:

/pre

[图片上传失败...(image-20977-1597911217600)]

(注:图来自极客时间专栏)

现在,我们一起来看看这条SQL查询语句的执行流程: select * from T where k between 3 and 5

在这个过程中, 回到主键索引树搜索的过程,我们称为回表。 可以看到,这个查询过程读了k索引树的3条记录(步骤1、3和5),回表了两次(步骤2和4)。

在这个例子中,由于查询结果所需要的数据只在主键索引上有,所以不得不回表。那么,有没有可能经过索引优化,避免回表过程呢?

如果执行的语句是select ID from T where k between 3 and 5,这时只需要查ID的值,而ID的值已经在k索引树上了,因此可以直接提供查询结果,不需要回表。也就是说,在这个查询里面,索引k已经“覆盖了”我们的查询需求,我们称为覆盖索引。

由于覆盖索引可以减少树的搜索次数,显著提升查询性能,所以使用覆盖索引是一个常用的性能优化手段。

需要注意的是,在引擎内部使用覆盖索引在索引k上其实读了三个记录,R3~R5(对应的索引k上的记录项),但是对于MySQL的Server层来说,它就是找引擎拿到了两条记录,因此MySQL认为扫描行数是2。

上面介绍了那么多 其实是在为延迟关联做铺垫,这里直接续上我们本次慢查询的sql:

我们都知道在做分页时会用到Limit关键字去筛选所需数据,limit接受1个或者2个参数,接受两个参数时第一个参数表示偏移量,即从哪一行开始取数据,第二个参数表示要取的行数。 如果只有一个参数,相当于偏移量为0。

当偏移量很大时,如limit 100000,10 取第100001-100010条记录,mysql会取出100010条记录然后将前100000条记录丢弃,这无疑是一种巨大的性能浪费。

当有这种写法时,我们可以采用延迟关联来进行优化,重点关注: SELECT id FROM qa_question WHERE expert_id = 69 AND STATUS = 30 ORDER BY over_time DESC LIMIT 0, 10 , 这里其实利用了索引覆盖,where条件后的expert_id 是有添加索引的,这里查询id 可以避免回表,大大提升效率。

工作中会遇到各种各样的问题,对于一个研发来说最重要的是能够从这些问题中学到什么。好久没有写博客了,究其原因还是自己变得懒惰了。 ( ̄ェ ̄;)

最后以《高性能Mysql》中的一段话结束:

mysql如何优化以下语句,查询耗时太久了?

一般进行性能分析,分如下三步:

首先需要使用慢查询日志功能,去获取所有查询时间比较长的SQL语句

其次查看执行计划查看有问题的SQL的执行计划 explain

最后可以使用show profile查看有问题的SQL的性能使用情况

慢查询日志分析

首先我们要使用慢查询日志,因为它收集了查询时间比较长的SQL语句,但使用之前必须开启慢查询日志,在配置文件my.cnf(一般为/etc/my.cnf)中的[mysqld] 增加如下参数:

slow_query_log=ONlong_query_time=3slow_query_log_file=/var/lib/mysql/slow-log.log复制代码

增加这些参数之后,重启MySQL,可以进行查询慢查询日志是否开启。

1. 任何地方都不要使用 select * from t,用具体的字段列表代替“*“,不要返回用不到的任何字段。

2. 索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有必要。

3. 并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引,如一表中有字段sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用。

4. 尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。

5. 尽可能的使用 varchar 代替 char ,因为首先变长字段存储空间小,可以节省存储空间, 其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。

6. 如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。

7. 对查询进行优化,应尽量避免全表扫描,首先应考虑在 where和order by相关的列上建立索引。

8. 应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描。

例如: select * from t where num is null

我们可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:select * from t where num=0。

mysql服务器读取速度优化

在开始演示之前,我们先介绍下两个概念。

概念一,数据的可选择性基数,也就是常说的cardinality值。

查询优化器在生成各种执行计划之前,得先从统计信息中取得相关数据,这样才能估算每步操作所涉及到的记录数,而这个相关数据就是cardinality。简单来说,就是每个值在每个字段中的唯一值分布状态。

比如表t1有100行记录,其中一列为f1。f1中唯一值的个数可以是100个,也可以是1个,当然也可以是1到100之间的任何一个数字。这里唯一值越的多少,就是这个列的可选择基数。

那看到这里我们就明白了,为什么要在基数高的字段上建立索引,而基数低的的字段建立索引反而没有全表扫描来的快。当然这个只是一方面,至于更深入的探讨就不在我这篇探讨的范围了。

概念二,关于HINT的使用。

这里我来说下HINT是什么,在什么时候用。

HINT简单来说就是在某些特定的场景下人工协助MySQL优化器的工作,使她生成最优的执行计划。一般来说,优化器的执行计划都是最优化的,不过在某些特定场景下,执行计划可能不是最优化。

比如:表t1经过大量的频繁更新操作,(UPDATE,DELETE,INSERT),cardinality已经很不准确了,这时候刚好执行了一条SQL,那么有可能这条SQL的执行计划就不是最优的。为什么说有可能呢?

来看下具体演示

譬如,以下两条SQL,

A:

select * from t1 where f1 = 20;

B:

select * from t1 where f1 = 30;

如果f1的值刚好频繁更新的值为30,并且没有达到MySQL自动更新cardinality值的临界值或者说用户设置了手动更新又或者用户减少了sample page等等,那么对这两条语句来说,可能不准确的就是B了。

这里顺带说下,MySQL提供了自动更新和手动更新表cardinality值的方法,因篇幅有限,需要的可以查阅手册。

那回到正题上,MySQL 8.0 带来了几个HINT,我今天就举个index_merge的例子。

示例表结构:

mysql desc t1;+------------+--------------+------+-----+---------+----------------+| Field      | Type         | Null | Key | Default | Extra          |+------------+--------------+------+-----+---------+----------------+| id         | int(11)      | NO   | PRI | NULL    | auto_increment || rank1      | int(11)      | YES  | MUL | NULL    |                || rank2      | int(11)      | YES  | MUL | NULL    |                || log_time   | datetime     | YES  | MUL | NULL    |                || prefix_uid | varchar(100) | YES  |     | NULL    |                || desc1      | text         | YES  |     | NULL    |                || rank3      | int(11)      | YES  | MUL | NULL    |                |+------------+--------------+------+-----+---------+----------------+7 rows in set (0.00 sec)

表记录数:

mysql select count(*) from t1;+----------+| count(*) |+----------+|    32768 |+----------+1 row in set (0.01 sec)

这里我们两条经典的SQL:

SQL C:

select * from t1 where rank1 = 1 or rank2 = 2 or rank3 = 2;

SQL D:

select * from t1 where rank1 =100  and rank2 =100  and rank3 =100;

表t1实际上在rank1,rank2,rank3三列上分别有一个二级索引。

那我们来看SQL C的查询计划。

显然,没有用到任何索引,扫描的行数为32034,cost为3243.65。

mysql explain  format=json select * from t1  where rank1 =1 or rank2 = 2 or rank3 = 2\G*************************** 1. row ***************************EXPLAIN: {  "query_block": {    "select_id": 1,    "cost_info": {      "query_cost": "3243.65"    },    "table": {      "table_name": "t1",      "access_type": "ALL",      "possible_keys": [        "idx_rank1",        "idx_rank2",        "idx_rank3"      ],      "rows_examined_per_scan": 32034,      "rows_produced_per_join": 115,      "filtered": "0.36",      "cost_info": {        "read_cost": "3232.07",        "eval_cost": "11.58",        "prefix_cost": "3243.65",        "data_read_per_join": "49K"      },      "used_columns": [        "id",        "rank1",        "rank2",        "log_time",        "prefix_uid",        "desc1",        "rank3"      ],      "attached_condition": "((`ytt`.`t1`.`rank1` = 1) or (`ytt`.`t1`.`rank2` = 2) or (`ytt`.`t1`.`rank3` = 2))"    }  }}1 row in set, 1 warning (0.00 sec)

我们加上hint给相同的查询,再次看看查询计划。

这个时候用到了index_merge,union了三个列。扫描的行数为1103,cost为441.09,明显比之前的快了好几倍。

mysql explain  format=json select /*+ index_merge(t1) */ * from t1  where rank1 =1 or rank2 = 2 or rank3 = 2\G*************************** 1. row ***************************EXPLAIN: {  "query_block": {    "select_id": 1,    "cost_info": {      "query_cost": "441.09"    },    "table": {      "table_name": "t1",      "access_type": "index_merge",      "possible_keys": [        "idx_rank1",        "idx_rank2",        "idx_rank3"      ],      "key": "union(idx_rank1,idx_rank2,idx_rank3)",      "key_length": "5,5,5",      "rows_examined_per_scan": 1103,      "rows_produced_per_join": 1103,      "filtered": "100.00",      "cost_info": {        "read_cost": "330.79",        "eval_cost": "110.30",        "prefix_cost": "441.09",        "data_read_per_join": "473K"      },      "used_columns": [        "id",        "rank1",        "rank2",        "log_time",        "prefix_uid",        "desc1",        "rank3"      ],      "attached_condition": "((`ytt`.`t1`.`rank1` = 1) or (`ytt`.`t1`.`rank2` = 2) or (`ytt`.`t1`.`rank3` = 2))"    }  }}1 row in set, 1 warning (0.00 sec)

我们再看下SQL D的计划:

不加HINT,

mysql explain format=json select * from t1 where rank1 =100 and rank2 =100 and rank3 =100\G*************************** 1. row ***************************EXPLAIN: {  "query_block": {    "select_id": 1,    "cost_info": {      "query_cost": "534.34"    },    "table": {      "table_name": "t1",      "access_type": "ref",      "possible_keys": [        "idx_rank1",        "idx_rank2",        "idx_rank3"      ],      "key": "idx_rank1",      "used_key_parts": [        "rank1"      ],      "key_length": "5",      "ref": [        "const"      ],      "rows_examined_per_scan": 555,      "rows_produced_per_join": 0,      "filtered": "0.07",      "cost_info": {        "read_cost": "478.84",        "eval_cost": "0.04",        "prefix_cost": "534.34",        "data_read_per_join": "176"      },      "used_columns": [        "id",        "rank1",        "rank2",        "log_time",        "prefix_uid",        "desc1",        "rank3"      ],      "attached_condition": "((`ytt`.`t1`.`rank3` = 100) and (`ytt`.`t1`.`rank2` = 100))"    }  }}1 row in set, 1 warning (0.00 sec)

加了HINT,

mysql explain format=json select /*+ index_merge(t1)*/ * from t1 where rank1 =100 and rank2 =100 and rank3 =100\G*************************** 1. row ***************************EXPLAIN: {  "query_block": {    "select_id": 1,    "cost_info": {      "query_cost": "5.23"    },    "table": {      "table_name": "t1",      "access_type": "index_merge",      "possible_keys": [        "idx_rank1",        "idx_rank2",        "idx_rank3"      ],      "key": "intersect(idx_rank1,idx_rank2,idx_rank3)",      "key_length": "5,5,5",      "rows_examined_per_scan": 1,      "rows_produced_per_join": 1,      "filtered": "100.00",      "cost_info": {        "read_cost": "5.13",        "eval_cost": "0.10",        "prefix_cost": "5.23",        "data_read_per_join": "440"      },      "used_columns": [        "id",        "rank1",        "rank2",        "log_time",        "prefix_uid",        "desc1",        "rank3"      ],      "attached_condition": "((`ytt`.`t1`.`rank3` = 100) and (`ytt`.`t1`.`rank2` = 100) and (`ytt`.`t1`.`rank1` = 100))"    }  }}1 row in set, 1 warning (0.00 sec)

对比下以上两个,加了HINT的比不加HINT的cost小了100倍。

总结下,就是说表的cardinality值影响这张的查询计划,如果这个值没有正常更新的话,就需要手工加HINT了。相信MySQL未来的版本会带来更多的HINT。


本文标题:mysql延时怎么优化 mysql从库延迟优化
标题链接:http://scyanting.com/article/hiegcp.html