python中函数快,python常用函数总结

python中函数的作用

Python 函数定义以及参数传递

10年积累的网站设计制作、成都做网站经验,可以快速应对客户对网站的新想法和需求。提供各种问题对应的解决方案。让选择我们的客户得到更好、更有力的网络服务。我虽然不认识你,你也不认识我。但先建设网站后付款的网站建设流程,更有古丈免费网站建设让你可以放心的选择与我们合作。

1.函数定义

#形如def func(args...):

doSomething123

以关键字def 开头,后面是函数名和参数下面是函数处理过程。

举例:

def add( a, b ):

return a+b12

参数可以设定默认值,如:

def add( a, b=10 ): #注意:默认值参数只会运算一次

return a+b12

默认值参数只会运算一次是什么意思?

def func( a, b=[] ): #b的默认值指向一个空的列表,每次不带默认值都会指向这块内存

b.append(a) return b

print(func(1))#向默认的空列表里加入元素1 ,默认列表里已经是[1]print(func(2))#向默认的列表里加入元素2,默认列表里已经是[1,2]print(func(3,[]))#向b指向的空列表里加入元素1 ,默认列表里还是[1,2]print(func(4))#向默认的列表里加入元素4,默认列表里已经是[1,2,4]'''

结果:

[1]

[1, 2]

[3]

[1, 2, 4]

'''12345678910111213141516

这下明白为什么默认参数只计算一次了吧,函数参数不传递时默认值总是指向固定的内存空间,就是第一次计算的空间。

2.参数传递

def func(a, b):

print('a=%d, b=%d' % (a,b) )12

在使用函数时可以如下方式,结果都是相同的

func(10,20) #不使用参数名,需要按参数顺序传递func(a=10,b=20) #使用参数名可以不按顺序传递func(b=20,a=10)#结果:a=10, b=20a=10, b=20a=10, b=201234567

如果函数定义形式如下方式:

def func(*args): #这种定义会把传递的参数包成元组

print(args,type(args))

func(10,20)#结果:#(10, 20) class 'tuple'1234567

举一个和上述过程相反的例子:

def func(a,b):

print('a=%d, b=%d' % (a,b) )

a = (10, 20)

func(*a) #在调用函数使用`*`则会把元组解包成单个变量按顺序传入函数#结果:a=10, b=20123456

总结:*号在定义函数参数时,传入函数的参数会转换成元组,如果 *号在调用时则会把元组解包成单个元素。

另一种定义:

def func(**kw):#使用**定义参数会把传入参数包装成字典dict

print(kw, type(kw) )

func(a=10,b=20)#这种函数在使用时必须指定参数值,使用key=value这种形式#结果:{'b': 20, 'a': 10} class 'dict'12345

相反的例子:

def func(a,b):

print('a=%d, b=%d' % (a,b) )

d = {'a':10, 'b':20 }

func(**d) #在调用时使用**会把字典解包成变量传入函数。12345

def func(*args, **kw):#这种形式的定义代表可以接受任意类型的参数

print(args,kw )12

总结:**号在定义函数参数时,传入函数的参数会转换成字典,如果 **号在调用时则会把字典解包成单个元素。

lambda表达式

lambda表达式就是一种简单的函数

形如 f = lambda 参数1,参数2: 返回的计算值

例如:

add = lambda x,y: x+y

print(add(1,2))'''

结果:3

'''12345

Python中冷门但非常好用的内置函数

Python中有许多内置函数,不像print、len那么广为人知,但它们的功能却异常强大,用好了可以大大提高代码效率,同时提升代码的简洁度,增强可阅读性

Counter

collections在python官方文档中的解释是High-performance container datatypes,直接的中文翻译解释高性能容量数据类型。这个模块实现了特定目标的容器,以提供Python标准内建容器 dict , list , set , 和 tuple 的替代选择。在python3.10.1中它总共包含以下几种数据类型:

容器名简介

namedtuple() 创建命名元组子类的工厂函数

deque 类似列表(list)的容器,实现了在两端快速添加(append)和弹出(pop)

ChainMap 类似字典(dict)的容器类,将多个映射集合到一个视图里面

Counter 字典的子类,提供了可哈希对象的计数功能

OrderedDict 字典的子类,保存了他们被添加的顺序

defaultdict 字典的子类,提供了一个工厂函数,为字典查询提供一个默认值

UserDict 封装了字典对象,简化了字典子类化

UserList 封装了列表对象,简化了列表子类化

UserString 封装了字符串对象,简化了字符串子类化

其中Counter中文意思是计数器,也就是我们常用于统计的一种数据类型,在使用Counter之后可以让我们的代码更加简单易读。Counter类继承dict类,所以它能使用dict类里面的方法

举例

#统计词频

fruits = ['apple', 'peach', 'apple', 'lemon', 'peach', 'peach']

result = {}

for fruit in fruits:

if not result.get(fruit):

result[fruit] = 1

else:

result[fruit] += 1

print(result)

#{'apple': 2, 'peach': 3, 'lemon': 1}下面我们看用Counter怎么实现:

from collections import Counter

fruits = ['apple', 'peach', 'apple', 'lemon', 'peach', 'peach']

c = Counter(fruits)

print(dict(c))

#{'apple': 2, 'peach': 3, 'lemon': 1}显然代码更加简单了,也更容易阅读和维护了。

elements()

返回一个迭代器,其中每个元素将重复出现计数值所指定次。元素会按首次出现的顺序返回。如果一个元素的计数值小于1,elements()将会忽略它。

c = Counter(a=4, b=2, c=0, d=-2)

sorted(c.elements())

['a', 'a', 'a', 'a', 'b', 'b']most_common([n])

返回一个列表,其中包含n个最常见的元素及出现次数,按常见程度由高到低排序。如果n被省略或为None,most_common()将返回计数器中的所有元素。计数值相等的元素按首次出现的顺序排序:

Counter('abracadabra').most_common(3)

[('a', 5), ('b', 2), ('r', 2)]这两个方法是Counter中最常用的方法,其他方法可以参考 python3.10.1官方文档

实战

Leetcode 1002.查找共用字符

给你一个字符串数组words,请你找出所有在words的每个字符串中都出现的共用字符(包括重复字符),并以数组形式返回。你可以按任意顺序返回答案。

输入:words = ["bella", "label", "roller"]

输出:["e", "l", "l"]

输入:words = ["cool", "lock", "cook"]

输出:["c", "o"]看到统计字符,典型的可以用Counter完美解决。这道题是找出字符串列表里面每个元素都包含的字符,首先可以用Counter计算出每个元素每个字符出现的次数,依次取交集最后得出所有元素共同存在的字符,然后利用elements输出共用字符出现的次数

class Solution:

def commonChars(self, words: List[str]) - List[str]:

from collections import Counter

ans = Counter(words[0])

for i in words[1:]:

ans = Counter(i)

return list(ans.elements())提交一下,发现83个测试用例耗时48ms,速度还是不错的

sorted

在处理数据过程中,我们经常会用到排序操作,比如将列表、字典、元组里面的元素正/倒排序。这时候就需要用到sorted(),它可以对任何可迭代对象进行排序,并返回列表

对列表升序操作:

a = sorted([2, 4, 3, 7, 1, 9])

print(a)

# 输出:[1, 2, 3, 4, 7, 9]对元组倒序操作:

sorted((4,1,9,6),reverse=True)

print(a)

# 输出:[9, 6, 4, 1]使用参数:key,根据自定义规则,按字符串长度来排序:

fruits = ['apple', 'watermelon', 'pear', 'banana']

a = sorted(fruits, key = lambda x : len(x))

print(a)

# 输出:['pear', 'apple', 'banana', 'watermelon']all

all() 函数用于判断给定的可迭代参数iterable中的所有元素是否都为 TRUE,如果是返回 True,否则返回 False。元素除了是 0、空、None、False外都算True。注意:空元组、空列表返回值为True。

all(['a', 'b', 'c', 'd']) # 列表list,元素都不为空或0

True

all(['a', 'b', '', 'd']) # 列表list,存在一个为空的元素

False

all([0, 1,2, 3]) # 列表list,存在一个为0的元素

False

all(('a', 'b', 'c', 'd')) # 元组tuple,元素都不为空或0

True

all(('a', 'b', '', 'd')) # 元组tuple,存在一个为空的元素

False

all((0, 1, 2, 3)) # 元组tuple,存在一个为0的元素

False

all([]) # 空列表

True

all(()) # 空元组

Trueany函数正好和all函数相反:判断一个tuple或者list是否全为空,0,False。如果全为空,0,False,则返回False;如果不全为空,则返回True。

F-strings

在python3.6.2版本中,PEP 498提出一种新型字符串格式化机制,被称为 “字符串插值” 或者更常见的一种称呼是F-strings,F-strings提供了一种明确且方便的方式将python表达式嵌入到字符串中来进行格式化:

s1='Hello'

s2='World'

print(f'{s1} {s2}!')

# Hello World!在F-strings中我们也可以执行函数:

def power(x):

return x*x

x=4

print(f'{x} * {x} = {power(x)}')

# 4 * 4 = 16而且F-strings的运行速度很快,比传统的%-string和str.format()这两种格式化方法都快得多,书写起来也更加简单。

本文主要讲解了python几种冷门但好用的函数,更多内容以后会陆陆续续更新~

python函数高级

一、函数的定义

函数是指将一组语句的集合通过一个名字(函数名)封装起来,想要执行这个函数,只需要调用函数名即可

特性:

减少重复代码

使程序变得可扩展

使程序变得易维护

二、函数的参数

2.1、形参和实参数

形参,调用时才会存在的值

实惨,实际存在的值

2.2、默认参数

定义:当不输入参数值会有一个默认的值,默认参数要放到最后

2.3、 关键参数

定义: 正常情况下,给函数传参数要安装顺序,不想按顺序可以用关键参数,只需要指定参数名即可,(指定了参数名的就叫关键参数),但是要求是关键参数必须放在位置参数(以位置顺序确定对应的参数)之后

2.4、非固定参数

定义: 如你的函数在传入参数时不确定需要传入多少个参数,就可以使用非固定参数

# 通过元组形式传递

# 通过列表形式传递

# 字典形式(通过k,value的方式传递)

# 通过变量的方式传递

三、函数的返回值

作用:

返回函数执行结果,如果没有设置,默认返回None

终止函数运行,函数遇到return终止函数

四、变量的作用域

全局变量和局部变量

在函数中定义的变量叫局部变量,在程序中一开始定义的变量叫全局变量

全局变量作用域整个程序,局部变量作用域是定义该变量的函数

当全局变量与局部变量同名是,在定义局部变量的函数内,局部变量起作用,其他地方全局变量起作用

同级的局部变量不能互相调用

想要函数里边的变量设置成全局变量,可用global进行设置

五、特殊函数

5.1、嵌套函数

定义: 嵌套函数顾名思义就是在函数里边再嵌套一层函数

提示 在嵌套函数里边调用变量是从里往外依次调用,意思就是如果需要调用的变量在当前层没有就会去外层去调用,依次内推

匿名函数

基于Lambda定义的函数格式为: lambda 参数:函数体

参数,支持任意参数。

匿名函数适用于简单的业务处理,可以快速并简单的创建函数。

# 与三元运算结合

5.3、高阶函数

定义:变量可以指向函数,函数的参数可以接收变量,那么一个函数就可以接收另一个函数作为参数,这种函数称之为高阶函数 只需要满足一下任意一个条件,即是高阶函数

接收一个或多个函数作为输入

return返回另一个函数

5.4、递归函数

定义:一个函数可以调用其他函数,如果一个函数调用自己本身,这个函数就称为递归函数

在默认情况下Python最多能递归1000次,(这样设计师是为了防止被内存被撑死)可以通过sys.setrecursionlimit(1500)进行修改

递归实现过程是先一层一层的进,然后在一层一层的出来

必须有一个明确的条件结束,要不然就是一个死循环了

每次进入更深层次,问题规模都应该有所减少

递归执行效率不高,递归层次过多会导致站溢出

# 计算4的阶乘 4x3x2x1

# 打印数字从1-100

5.5、闭包现象

定义:内层函数调用外层函数的变量,并且内存函数被返回到外边去了

闭包的意义:返回的函数对象,不仅仅是一个函数对象,在该函数外还包裹了一层作用域,这使得,该函数无论在何处调用,优先使用自己外层包裹的作用域


新闻标题:python中函数快,python常用函数总结
网页网址:http://scyanting.com/article/hodchc.html