nosql数据库在医疗,Nosql数据库

什么是NoSQL数据库

什么是NoSQL数据库?从名称“非SQL”或“非关系型”衍生而来,这些数据库不使用类似SQL的查询语言,通常称为结构化存储。这些数据库自1960年就已经存在,但是直到现在一些大公司(例如Google和Facebook)开始使用它们时,这些数据库才流行起来。该数据库最明显的优势是摆脱了一组固定的列、连接和类似SQL的查询语言的限制。有时,NoSQL这个名称也可能表示“不仅仅SQL”,来确保它们可能支持SQL。 NoSQL数据库使用诸如键值、宽列、图形或文档之类的数据结构,并且可以如JSON之类的不同格式存储。

目前创新互联已为近1000家的企业提供了网站建设、域名、虚拟空间、网站托管、服务器租用、企业网站设计、荔浦网站维护等服务,公司将坚持客户导向、应用为本的策略,正道将秉承"和谐、参与、激情"的文化,与客户和合作伙伴齐心协力一起成长,共同发展。

什么是nosql数据库

Nosql全称是Not Only SQL,是一种不同于关系型数据库的数据库管理系统设计方式。对NoSQL最普遍的解释是“非关系型的”,强调Key-Value Stores和文档数据库的优点,而不是单纯的反对RDBMS

什么叫循证医学?还有数据库?!

循证医学,意为“遵循证据的医学”,是一个医学用词。循证医学的核心思想是在医疗决策中将临床证据、个人经验与患者的实际状况和意愿三者相结合。 临床证据主要来自大样本的随机对照临床试验(RCT)和系统性评价或荟萃分析。

数据库,是一个按数据结构来存储和管理数据的计算机软件系统。数据库以一定方式储存在一起,能与多个用户共享,具有尽可能小的冗余度,与应用程序彼此独立的数据集合,可视为存储电子文件的处所,用户可以对文件中的数据进行新增、查询、更新、删除等操作。

扩展资料:

数据库的类型

1、关系数据库

关系型数据库中,存储的格式可以直观地反映实体间的关系。常见的关系型数据库有Mysql,SqlServer等。在轻量或者小型的应用中,使用不同的关系型数据库对系统的性能影响不大,但是在构建大型应用时,则需要根据应用的业务需求和性能需求,选择合适的关系型数据库。

2、非关系型数据库(NoSQL)

分布式的、非关系型的、不保证遵循ACID原则的数据存储系统。NoSQL数据库技术具有非常明显的应用优势,如数据库结构相对简单,在大数据量下的读写性能好;能满足随时存储自定义数据格式需求,非常适用于大数据处理工作。

参考资料来源:百度百科-循证医学

参考资料来源:百度百科-数据库

什么是NoSQL数据库?

NoSQL,是not only sql,是非关系数据库,不同于oracle等关系数据库。hadoop,是分布式解决方案,即为Mapreduce(计算的)和HDFS(文件系统),使用Hadoop和NoSQL可以构造海量数据解决方案。

最近很火的医疗大数据分析到底是个什么鬼

医疗行业是一个生态系统,这个生态系统包含多个重要角色:作为医疗服务提供方的公私立医院、社区医院等医疗机构,作为医疗服务和产品的支付方的商业保险公司以及社会保险,还有作为医疗政策的制定和监管方的各级政府卫生部门,比如卫计委和地方各级卫生厅局,以及作为医药和医疗产品生产和销售方的各个相关企业,他们研发、生产或者销售各类药物以及医疗器械产品。除了以上传统角色,随着可穿戴技术的成熟和逐步市场化,目前医疗行业还出现很多面向消费者健康以及运动的产品和基于数据的服务。他们通过可穿戴设备记录和检测消费者的日常活动和生理指标,也成为医疗行业中不可或缺的一员,并逐步成长为大数据的拥有者。

医疗生态环境在其运转过程中产生了大量的数据。如何更加有效地整合和利用相关数据,为政府更好地履行政策制定和监管职能,是各级政府卫生部门所面临的重要问题之一。如何利用已有病人的数据提高未来临床治疗的效率和质量,并支撑专业的医疗研究是医疗服务方所面临的重要挑战。

存在的问题

随着国家深化医疗卫生体制改革,对医疗卫生信息化建设资金投入的不断增加,促使医疗卫生领域信息化建设取得了一定的成效,在全国医疗卫生信息统计、各级医疗卫生管理体系、基本公共卫生服务提供、医院信息化管理等方面提供了信息化辅助管理手段,提升工作效率和医疗卫生管理水平。 但医疗行业的大数据的收集、分析和应用仍然面临很多的挑战。

首先,医疗行业的大数据分属不同的行业角色。如何整合这些大数据是一个挑战。数据的分享和交换需要合理的政策并考虑各方合理的利益诉求。

其次,医疗行业数据的电子化和数字化仍处于早期阶段,很多数据尚未数字化。比如,医疗行业仍然要求医疗机构将病人档案纸质化,这加大了医疗机构工作人员的工作量,从某种程度上抑制了医疗信息化系统的使用。国内仍然有很多医院包括基层医院并未购买和使用完善的信息化系统来支撑相关数据的数字化。例如,很多基层医院尚未建立基本的医院信息系统(HIS)。电子病历系统(EMR/EHR)在国内医院也未普及。

再次,由于医疗信息系统的提供商非常多,不同医疗机构的需求千变万化,行业内部同类信息系统在数据结构和格式等解决方案上的同质性比较差,数据交换和分享在技术上存在阻力。尽管面临这么多的挑战,如果我们能够围绕医疗大数据制定合理的整合、分析和应用政策和策略,那么医疗大数据及其分析就能帮助提高整个医疗行业的运转效率乃至体验水平。

医疗大数据分析应用

请点击输入图片描述

大数据分析的发展为解决医疗行业所面临的问题提供了可能性。上图总结了大数据分析在医疗行业中潜在的应用场景以及主要用户。我们来看看几个典型应用:

1、临床医疗模式分析

临床过程模式分析功能是指利用大数据分析系统对过程数据进行分析并改进的能力。医疗行业数据分析在医院内部通过数据进行诊疗过程分析,以发现大量临床电子记录数据之间的关系,为今后的循证临床实践提供参考。临床数据分析系统为临床医疗过程全程大数据、实时诊疗数据以及病人电子病历可视化数据的全景分析提供了新途径,特别是对于区域医疗能够观察到病人以前在其他医院的入院情况,支持在医疗成本和效果之间的平衡,帮助医院进行医疗科研。

2、非结构化数据分析

对于存储于分布式数据库系统的数据,需要进行数据过滤、清晰、转换并集成整合,建立临床数据中心。存在于多个部门的非结构化数据,采用NOSQL 数据库进行数据存储,非结构化或半结构化的管理的核心是Apache Hadoop开发环境的实现,MapReduce 能够将大的工作任务分解为一组离散的任务,将分析后的数据集中存储,并提供可视化展现和医疗决策支持访问。

医疗大数据分析与传统数据分析系统的差别在于大数据分析具有非结构化数据的分析能力,这种非结构化数据是传统的医疗数据库不能处理的。临床电子病历中基于XML文档信息、临床影像、医生处方等,非结构化数据占临床数据总量的80%以上,对这一部分的数据进行处理分析,能够得到相关指证,比如,对医学影像分析,通过与相关疾病典型影像特征对比,得到病人疾病诊断,这对医院改进临床效率控制医疗成本有极大益处。

3、管理决策支持

管理决策支持功能强调日常医疗服务过程分析,以支撑管理决策并采取相关措施。一般来说,管理决策支持依赖于医院信息共享互联互通以及信息数据分析能力,对于重大疾病循证分析综合评判对临床医疗质量管理有重大价值,依据电子病历数据分析,开发个性化诊疗方案有助于提升医院精准医疗水平。

从机构组织层面对医院信息系统产生的大数据进行分析,对于跨部门操作流程进行改进具有重要意义,综合性数据分析能帮助管理者全面了解组织机构存在的薄弱环节并采取对应措施,从实践看,建立临床数据中心数据仓库并与实际生产系统实时交互,对于医疗质量水平提升和病人临床安全具有重要保障作用。

4、预测分析功能

通过医疗大数据使用统计分析工具建立评价模型,对疾病发展转归进行预测是医疗大数据应用的重要方面。大数据的预测功能强调对通过大量数据分析对未来趋势预测,医疗机构的数据分析平台需要与临床数据中心、预测分析算法(如:回归分析、机器学习、神经网络等)等相结合,向医护管工作者提供可视化界面,帮助管理和临床决策。临床大数据中心的建设能够通过过去历史数据对未来提供参考,有助于医院精细化管理和精准化医疗。

在医疗机构,对二次住院预测分析大大降低了病情的不确定性,重症中心ICU病人全程生理参数数据监控分析,进行关键指标的警示和交互干预,使医护工作更有效率,优化了相关操作,降低了医疗风险。同时,有利于形成医护患协同的病人全过程的疾病管理分析,产生最佳医疗实践的疾病诊治流程。

5、数据闭环追溯

医疗数据信息如:费用成本数据、临床数据、药学信息、病人行为数据、设备传感数据等均需实时采集或尽量实时采集。传统临床信息系统数据分散在各个应用系统中,数据不一致,产生冗余矛盾,而且不同部门的设备或不同临床信息应用内部信息数据孤立使临床过程工作流优化也存在困难。数据的闭环追溯有利于以病人为中心的临床需求和部门服务与设备应用的监控。大数据分析提供了全流程、全方位的解决能力,业务系统的数据可实时与数据中心进行数据交互,通过大数据算法进行深度评价分析,医护工作者可即时监控病人状态、追踪相关的警示信息并采取相应措施,对医疗安全和用药安全有重要价值。

总的来说,大数据分析在医疗行业具有广泛的应用前景。首先,医疗行业各个主要角色已经或者开始积累大量数据并为大数据分析创造了条件。不同数据集合的整合和分析面临政策和利益诉求的挑战,但是也带来了新的机遇。其次,医疗行业是一个生态系统并面临诸多问题,大数据分析为解决这些系统性问题提供了新工具。

亿信华辰作为数据分析软件领导厂商,紧跟医疗卫生领域发展趋势,面向国家卫健委及各级医疗卫生单位、机构,提供灵活、可适配的解决方案。

请点击输入图片描述

提供集数据采集、数据治理(含元数据、数据标准、数据质量、数据生命周期管理、数据安全)、数据分析与挖掘、可视化展示一体化的解决方案。

一、NoSQL数据库简介

Web1.0的时代,数据访问量很有限,用一夫当关的高性能的单点服务器可以解决大部分问题。

随着Web2.0的时代的到来,用户访问量大幅度提升,同时产生了大量的用户数据。加上后来的智能移动设备的普及,所有的互联网平台都面临了巨大的性能挑战。

NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,泛指非关系型的数据库。

NoSQL 不依赖业务逻辑方式存储,而以简单的key-value模式存储。因此大大的增加了数据库的扩展能力。

Memcache Memcache Redis Redis MongoDB MongoDB 列式数据库 列式数据库 Hbase Hbase

HBase是Hadoop项目中的数据库。它用于需要对大量的数据进行随机、实时的读写操作的场景中。

HBase的目标就是处理数据量非常庞大的表,可以用普通的计算机处理超过10亿行数据,还可处理有数百万列元素的数据表。

Cassandra Cassandra

Apache Cassandra是一款免费的开源NoSQL数据库,其设计目的在于管理由大量商用服务器构建起来的庞大集群上的海量数据集(数据量通常达到PB级别)。在众多显著特性当中,Cassandra最为卓越的长处是对写入及读取操作进行规模调整,而且其不强调主集群的设计思路能够以相对直观的方式简化各集群的创建与扩展流程。

主要应用:社会关系,公共交通网络,地图及网络拓谱(n*(n-1)/2)


分享标题:nosql数据库在医疗,Nosql数据库
文章起源:http://scyanting.com/article/hogjdc.html