python中正弦函数 python正弦函数拟合

python怎么从控制台输入几个整数

python怎么从控制台输入几个整数

创新互联主要从事成都网站建设、网站建设、网页设计、企业做网站、公司建网站等业务。立足成都服务巴彦,10年网站建设经验,价格优惠、服务专业,欢迎来电咨询建站服务:18982081108

main()

{

int n;

printf("input number\n");

scanf("%d",n);

s(n);

printf("n=%d\n",n);

}

int s(int n)

{

int i;

for(i=n-1;i=1;i--)

n=n+i;

printf("n=%d\n",n);

}

本程序中定义了一个函数s,该函数的功能是求∑ni的值。在主函数中输入n值,并作为实参,在调用时传送给s 函数的形参量n( 注意,本例的形参变量和实参变量的标识符都为n,但这是两个不同的量,各自的作用域不同)。在主函数中用printf 语句输出一次n值,这个n值是实参n的值。在函数s中也用printf 语句输出了一次n值,这个n值是形参最后取得的n值0。从运行情况看,输入n值为100。即实参n的值为100。把此值传给函数s时,形参n的初值也为100,在执行函数过程中,形参n的值变为5050。返回主函数之后,输出实参n的值仍为100。可见实参的值不随形参的变化而变化。

8.3.2 函数的返回值

函数的值是指函数被调用之后,执行函数体中的程序段所取得的并返回给主调函数的值。如调用正弦函数取得正弦值,调用例8.1的max函数取得的最大数等。对函数的值(或称函数返回值)有以下一些说明:

1) 函数的值只能通过return语句返回主调函数。

Python实操:手把手教你用Matplotlib把数据画出来

作者:迈克尔·贝耶勒(Michael Beyeler)

如需转载请联系华章 科技

如果已安装Anaconda Python版本,就已经安装好了可以使用的 Matplotlib。否则,可能要访问官网并从中获取安装说明:

正如使用np作为 NumPy 的缩写,我们将使用一些标准的缩写来表示 Matplotlib 的引入:

在本书中,plt接口会被频繁使用。

让我们创建第一个绘图。

假设想要画出正弦函数sin(x)的线性图。得到函数在x坐标轴上0≤x<10内所有点的值。我们将使用 NumPy 中的 linspace 函数来在x坐标轴上创建一个从0到10的线性空间,以及100个采样点:

可以使用 NumPy 中的sin函数得到所有x点的值,并通过调用plt中的plot函数把结果画出来:

你亲自尝试了吗?发生了什么吗?有没有什么东西出现?

实际情况是,取决于你在哪里运行脚本,可能无法看到任何东西。有下面几种可能性:

1. 从.py脚本中绘图

如果从一个脚本中运行 Matplotlib,需要加上下面的这行调用:

在脚本末尾调用这个函数,你的绘图就会出现!

2. 从 IPython shell 中绘图

这实际上是交互式地执行Matplotlib最方便的方式。为了让绘图出现,需要在启动 IPython 后使用所谓的%matplotlib魔法命令。

接下来,无须每次调用plt.show()函数,所有的绘图将会自动出现。

3. 从 Jupyter Notebook 中绘图

如果你是从基于浏览器的 Jupyter Notebook 中看这段代码,需要使用同样的%matplotlib魔法命令。然而,也可以直接在notebook中嵌入图形,这会有两种输出选项:

在本书中,将会使用inline选项:

现在再次尝试一下:

上面的命令会得到下面的绘图输出结果:

如果想要把绘图保存下来留作以后使用,可以直接在 IPython 或者 Jupyter Notebook 使用下面的命令保存:

仅需要确保你使用了支持的文件后缀,比如.jpg、.png、.tif、.svg、.eps或者.pdf。

作为本章最后一个测试,让我们对外部数据集进行可视化,比如scikit-learn中的数字数据集。

为此,需要三个可视化工具:

那么开始引入这些包吧:

第一步是载入实际数据:

如果没记错的话,digits应该有两个不同的数据域:data域包含了真正的图像数据,target域包含了图像的标签。相对于相信我们的记忆,我们还是应该对digits稍加 探索 。输入它的名字,添加一个点号,然后按Tab键:digits.TAB,这个操作将向我们展示digits也包含了一些其他的域,比如一个名为images的域。images和data这两个域,似乎简单从形状上就可以区分。

两种情况中,第一维对应的都是数据集中的图像数量。然而,data中所有像素都在一个大的向量中排列,而images保留了各个图像8×8的空间排列。

因此,如果想要绘制出一副单独的图像,使用images将更加合适。首先,使用NumPy的数组切片从数据集中获取一幅图像:

这里是从1797个元素的数组中获取了它的第一行数据,这行数据对应的是8×8=64个像素。下面就可以使用plt中的imshow函数来绘制这幅图像:

上面的命令得到下面的输出:

此外,这里也使用cmap参数指定了一个颜色映射。默认情况下,Matplotlib 使用MATLAB默认的颜色映射jet。然而,在灰度图像的情况下,gray颜色映射更有效。

最后,可以使用plt的subplot函数绘制全部数字的样例。subplot函数与MATLAB中的函数一样,需要指定行数、列数以及当前的子绘图索引(从1开始计算)。我们将使用for 循环在数据集中迭代出前十张图像,每张图像都分配到一个单独的子绘图中。

这会得到下面的输出结果:

关于作者:Michael Beyeler,华盛顿大学神经工程和数据科学专业的博士后,主攻仿生视觉计算模型,用以为盲人植入人工视网膜(仿生眼睛),改善盲人的视觉体验。 他的工作属于神经科学、计算机工程、计算机视觉和机器学习的交叉领域。同时他也是多个开源项目的积极贡献者。

本文摘编自《机器学习:使用OpenCV和Python进行智能图像处理》,经出版方授权发布。

python里的问题 ,pywt.dwt(signal,'db1','sym')这个函数

噪声能获取吗?好吧。你可以试试减一减。不过你的测试用例不太对。 尽量用有规律的数据去做。

比如你可以做一个正弦函数,再人为的加上一点点扰动。再做小波变换看看。另外数据要多些。太短的数据看不出效果来。

至于变换后是两个4,我想等你数据弄多些就明白了。 数据多些,就容易做图。你把变换后的数据变成图形,画出来。可以用EXCEL来画。

这样一对比就明白变换后的两个4数组是什么数据。 然后你就可以针对性的处理。取得噪声也是可以的。

通常来讲噪声是没有规律的。 但是不排除它是另外一种规律迭加上去的。 试试看。

Python如何画cos和sin的图啊?

在python自带编辑器IDLE中,新建脚本如作图.py

导入需要的模块

import numpy as np

import scipy as sp

import pylab as pl

2

输入代码

x=np.linspace(0,4*np.pi,100)

pl.plot(x,pl.sin(x))

pl.show()

3

执行代码,按F5,可直接显示图片

4

几点说明:

1. 方法linspace(0,4*np.pi,100)表示从0开始,到4*pi结束,生成100个点

2. 方法plot为画图函数,相当于plot(x,y),x为横坐标,y为纵坐标

3.show()为展示出来

希望采纳!!

Python科学计算——复杂信号FFT

FFT (Fast Fourier Transform, 快速傅里叶变换) 是离散傅里叶变换的快速算法,也是数字信号处理技术中经常会提到的一个概念。用快速傅里叶变换能将时域的数字信号转换为频域信号,转换为频域信号后我们可以很方便地分析出信号的频率成分。

当我们把双频信号FFT示例中的 fft_size 的值改为 2**12 时,这时,基频为 16Hz,不能被 1kHz整除,所以 1kHz 处发生了频谱泄露,而它能被 4kHz 整除,所以 4kHz 可以很好地被采样。

由于波形的前后不是连续的,出现波形跳变,而跳变处有着非常广泛的频谱,因此FFT的结果中出现了频谱泄漏。

为了减小FFT所截取的数据段前后的跳变,可以对数据先乘以一个窗函数,使得其前后数据能平滑过渡。常用的hanning窗函数的定义如下:

50Hz 正弦波与hann窗函数乘积之后的重复波形如下:

我们对频谱泄漏示例中的1kHz 和 4kHz 信号进行了 hann 窗函数处理,可以看出能量更加集中在 1kHz 和 4kHz,在一定程度上抑制了频谱泄漏。

以 1kHz 三角波为例,我们知道三角波信号中含有丰富的频率信息,它的傅里叶级数展开为:

当数字信号的频率随时间变化时,我们称之为扫频信号。以频率随时间线性变化的扫频信号为例,其数学形式如下:

其频率随时间线性变化,当我们在 [0,1] 的时间窗口对其进行采样时,其频率范围为 0~5kHz。当时间是连续时,扫频信号的频率也是连续的。但是在实际的处理中,是离散的点采样,因此时间是不连续的,这就使扫频信号的快速傅里叶变换问题退化为多点频信号快速傅里叶变换问题。其快速傅里叶变换得到的频谱图如下所示:

以 50Hz 正弦信号相位调制到 1kHz 的信号为例,其信号形式如下:

它的时域波形,频率响应和相位响应如下图所示:

以扫频信号为例,当我们要探究FFT中的能量守恒时,我们要回归到信号最初的形式:

Python中的反三角函数求确定角度

acos()方法返回x的反余弦值,以弧度表示。

以下是acos()方法的语法:acos(x)

注意:此函数是无法直接访问的,所以我们需要导入math模块,然后需要用math的静态对象来调用这个函数。x -- 这必须是在范围内的数字值-1到1,如果x大于1,则它会产生一个错误。

扩展资料

python运行的两种方式

1、命令行:python +需要执行的代码

特点:会立即看到效果,用于代码调试,写到内存中,不会永久保存

2、写到文件里面:python +执行文件的位置

特点:可以永久保存。

过程:

1、启动python解释器

2、将内容从硬盘读取到内存中

3、执行python代码

(再次强调:程序在未运行前跟普通文件无异,只有程序在运行时,文件内所写的字符才有特定的语法意义)


本文名称:python中正弦函数 python正弦函数拟合
文章源于:http://scyanting.com/article/hpoiic.html