python方差函数 用python求方差
Python3 for循环求方差函数问题
def get_fanc(a):
创新互联建站拥有10余年成都网站建设工作经验,为各大企业提供网站设计制作、成都网站建设服务,对于网页设计、PC网站建设(电脑版网站建设)、成都app软件开发公司、wap网站建设(手机版网站建设)、程序开发、网站优化(SEO优化)、微网站、申请域名等,凭借多年来在互联网的打拼,我们在互联网网站建设行业积累了很多网站制作、网站设计、网络营销经验,集策划、开发、设计、营销、管理等网站化运作于一体,具备承接各种规模类型的网站建设项目的能力。
b,c,d=0,0,0
print(type(a))
e=len(a)
f=sum(a)
b=f/e
for i in a:
c=c+(i-b)
c=c/b
return c
test = [1,2,3]
print(get_fanc(test))
我这边测试表示没有问题
python编程统计列表中各数据的方差和标准差请编写主函数和计算方差的函数var。(不能引用库里)
def fangcha(): a=float(raw_input("请输入a:")) b=float(raw_input("请输入b:")) c=float(raw_input("请输入C:")) d=(a+b+c)/3.0 e=((a-d)**2+(b-d)**2+(c-d)**2)/3.0 print "平均数是:%f方差是:%f" %(d,e) fangcha() Python2.7可用
用python求数据表中数据的均值与方差
以下为代码:
numstr = input("请输入全部数据:用英文逗号(,),中文逗号(,),\
空格( ),制表符(tab键)或换行(请一次性复制过来)中的一种统一分隔数据:")
if "," in numstr:
numlist = numstr.split(",")
elif "," in numstr:
numlist = numstr.split(",")
elif "\t" in numstr:
numlist = numstr.split("\t")
elif "\n" in numstr:
numlist = numstr.split("\n")
elif " " in numstr:
numlist = numstr.split(" ")
else:
numlist = [numstr]
numlist = list(map(lambda x:x.strip(",").strip(",").\
strip("\t").strip("\n").strip(" "), numlist))
for i in numlist.copy():
try:
a = float(i)
except:
numlist.remove(i)
print("已过滤字符串:%s"%i)
#好了,上面很多只是方便用户而已(但还是有一些有用的),主要是下面
numlist = list(map(lambda x:float(x), numlist))#所有字符串转为浮点
print("最终数列:",numlist)#输出最终数列,进行核对
average = sum(numlist)/len(numlist)#用数列和除以出列长度得到平均数
variance = 0#方差,先记为0
for i in numlist:#遍历列表
variance += (i - average) ** 2#反正就是公式对吧,先加进去
variance /= len(numlist)#还是公式,那一长串还得除以一个数列长度
print("均值:%.2f\n方差:%.2f"%(average, variance))#分两行输出
以下为输出效果:
请输入全部数据:用英文逗号(,),中文逗号(,),空格( ),制表符(tab键)或换行(请一次性复制过来)中的一种统一分隔数据:38,22,99,10,99,7, 25,,40
已过滤字符串:
最终数列: [38.0, 22.0, 99.0, 10.0, 99.0, 7.0, 25.0, 40.0]
均值:42.50
方差:1181.75
以下为解析:
平均值的思路就是总和除以列表长度,方差的思路就是把所有的(x-均值)²加起来,最后再除以一个长度即可。
本程序的优点:输入时逗号后出现空格与不小心多打逗号等情况都不会出问题,可以接受小数,可以先输出最终数列以供核对。
在Python库中的static模块用什么函数可以求数据的样本方差
自定义函数求解即可,参考代码如下:
def f_sigma(x):
# 通过Python定义一个计算变量波动率的函数
# x:代表变量的样本值,可以用列表的数据结构输入
n = len(x)
u_mean = sum(x)/n #计算变量样本值的均值
z = [] #生成一个空列表
for t in range(n):
z.append((x[t]-u_mean)**2)
return (sum(z)/(n-1))**0.5 # n-1 自由度
a = f_sigma(x = [1,2,3])
print('样本方差:', a)
当前名称:python方差函数 用python求方差
文章位置:http://scyanting.com/article/hpoijh.html