python暂存函数 python 暂存数据

python有多少内置函数

Python内置函数有很多,为大家推荐5个神仙级的内置函数:

成都创新互联是一家集网站建设,尚志企业网站建设,尚志品牌网站建设,网站定制,尚志网站建设报价,网络营销,网络优化,尚志网站推广为一体的创新建站企业,帮助传统企业提升企业形象加强企业竞争力。可充分满足这一群体相比中小企业更为丰富、高端、多元的互联网需求。同时我们时刻保持专业、时尚、前沿,时刻以成就客户成长自我,坚持不断学习、思考、沉淀、净化自己,让我们为更多的企业打造出实用型网站。

(1)Lambda函数

用于创建匿名函数,即没有名称的函数。它只是一个表达式,函数体比def简单很多。当我们需要创建一个函数来执行单个操作并且可以在一行中编写时,就可以用到匿名函数了。

Lamdba的主体是一个表达式,而不是一个代码块。仅仅能在lambda表达式中封装有限的逻辑进去。

利用Lamdba函数,往往可以将代码简化许多。

(2)Map函数

会将一个函数映射到一个输入列表的所有元素上,比如我们先创建了一个函数来返回一个大写的输入单词,然后将此函数应有到列表colors中的所有元素。

我们还可以使用匿名函数lamdba来配合map函数,这样可以更加精简。

(3)Reduce函数

当需要对一个列表进行一些计算并返回结果时,reduce()是个非常有用的函数。举个例子,当需要计算一个整数列表所有元素的乘积时,即可使用reduce函数实现。

它与函数的最大的区别就是,reduce()里的映射函数(function)接收两个参数,而map接收一个参数。

(4)enumerate函数

用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标,一般用在for循环当中。

它的两个参数,一个是序列、迭代器或其他支持迭代对象;另一个是下标起始位置,默认情况从0开始,也可以自定义计数器的起始编号。

(5)Zip函数

用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表

当我们使用zip()函数时,如果各个迭代器的元素个数不一致,则返回列表长度与最短的对象相同。

Python性能提升神器!lru_cache的介绍和讲解

我们经常谈论的缓存一词,更多的类似于将硬盘中的数据存放到内存中以至于提高读取速度,比如常说的redis,就经常用来做数据的缓存。 Python的缓存(lru_cache)是一种装饰在被执行的函数上,将其执行的结果缓存起来,当下次请求的时候,如果请求该函数的传参未变则直接返回缓存起来的结果而不再执行函数的一种缓存装饰器。

那它和redis的区别在哪?有什么优势?怎么使用? 下面为你讲解

1.现在我们先不使用缓存来写一个求两数之和的函数,并调用执行它两次:

执行结果

可以看到 test 被执行了两次,现在我们加上缓存再进行执行:

执行结果

可以看到 test 函数只被执行了一次,第二次的调用直接输出了结果,使用了缓存起来的值。

2.当我们使用递归求斐波拉契数列 (斐波那契数列指的是这样一个数列:0,1,1,2,3,5,8,它从第3项开始,每一项都等于前两项之和) 的时候,缓存对性能的提升就尤其明显了:

不使用缓存求第40项的斐波拉契数列

执行时间

使用缓存求第40项的斐波拉契数列:

执行时间

两个差距是非常明显的,因为不使用缓存时,相当于要重复执行了很多的函数,而使用了 lru_cache 则把之前执行的函数结果已经缓存了起来,就不需要再次执行了。

查看lru_cache源码会发现它可以传递两个参数: maxsize 、 typed :

代表被lru_cache装饰的方法最大可缓存的结果数量 (被装饰方法传参不同一样,则结果不一样;如果传参一样则为同一个结果) , 如果不指定传参则默认值为128,表示最多缓存128个返回结果,当达到了128个时,有新的结果要保存时,则会删除最旧的那个结果。如果maxsize传入为None则表示可以缓存无限个结果;

默认为false,代表不区分数据类型,如果设置为True,则会区分传参类型进行缓存,官方是这样描述的:

但在python3.9.8版本下进行测试,typed为false时,按照官方的测试方法测试得到的还是会被当成不同的结果处理,这个时候typed为false还是为true都会区别缓存,这与官方文档的描述存在差异:

执行结果

但如果是多参数的情况下,则会被当成一个结果:

执行结果

这个时候设置typed为true时,则会区别缓存:

执行结果

当传参个数大于1时,才符合官方的说法,不清楚是不是官方举例有误

当传递的参数是dict、list等的可变参数时,lru_cache是不支持的,会报错:

报错结果

缓存 缓存位置 是否支持可变参数 是否支持分布式 是否支持过期时间设置 支持的数据结构 需单独安装 redis 缓存在redis管理的内存中 是 是 是 支持5种数据结构 是 lru_cache 缓存在应用进程的内存中,应用被关闭则被清空 否 否 否 字典(参数为:key,结果为:value) 否

经过上面的分析,lru_cache 功能相对于redis来说要简单许多,但使用起来更加方便,适用于小型的单体应用。如果涉及的缓存的数据种类比较多并且想更好的管理缓存、或者需要缓存数据有过期时间(类似登录验证的token)等,使用redis是优于lru_cache的。

python3_原生 LRU 缓存

原生 LRU 缓存(最低 Python 版本为 3.2)

目前,几乎所有层面上的软件和硬件中都需要缓存。Python 3 将 LRU(最近最少使用算法)缓存作为一个名为「lru_cache」的装饰器,使得对缓存的使用非常简单。

下面是一个简单的斐波那契函数,我们知道使用缓存将有助于该函数的计算,因为它会通过递归多次执行相同的工作。

现在,我们可以使用「lru_cache」来优化它(这种优化技术被称为「memoization」)。通过这种优化,我们将执行时间从几十秒降低到了几秒。


网站栏目:python暂存函数 python 暂存数据
转载来于:http://scyanting.com/article/hpsjie.html