Flink-状态编程的基本概念-创新互联
- Flink 中的状态
- 1.1 有状态算子
- 1.2 状态的管理
- 1.3 状态的分类
💎💎💎💎💎
Flink 中的状态更多资源链接,欢迎访问作者gitee仓库:https://gitee.com/fanggaolei/learning-notes-warehouse/tree/master
状态就如同事务处理时数据库中保存的信息一样,是用来辅助进行任务计算的数据。而在 Flink 这样的分布式系统中,我们不仅需要定义出状态在任务并行时的处理方式,还需要考虑如何持久化保存、以便发生故障时正确地恢复。这就需要一套完整的管理机制来处理所有的状态。
在流处理中,数据是连续不断到来和处理的。每个任务进行计算处理时,可以基于当前数据直接转换得到输出结果;也可以依赖一些其他数据。这些由一个任务维护,并且用来计算输出结果的所有数据,就叫作这个任务的状态。
1.1 有状态算子在 Flink 中,算子任务可以分为无状态和有状态两种情况。
无状态的算子任务只需要观察每个独立事件,根据当前输入的数据直接转换输出结果
而有状态的算子任务,则除当前数据之外,还需要一些其他数据来得到计算结果。这里的“其他数据”,就是所谓的状态(state),最常见的就是之前到达的数据,或者由之前数据计算出的某个结果。
有状态算子的一般处理流程,具体步骤如下。
(1)算子任务接收到上游发来的数据;
(2)获取当前状态;
(3)根据业务逻辑进行计算,更新状态;
(4)得到计算结果,输出发送到下游任务。
在传统的事务型处理架构中,这种额外的状态数据是保存在数据库中的。而对于实时流处理来说,这样做需要频繁读写外部数据库,如果数据规模非常大肯定就达不到性能要求了。所以 Flink 的解决方案是,将状态直接保存在内存中来保证性能,并通过分布式扩展来提高吞吐量。
在 Flink 中,每一个算子任务都可以设置并行度,从而可以在不同的 slot 上并行运行多个实例,我们把它们叫作“并行子任务”。而状态既然在内存中,那么就可以认为是子任务实例上的一个本地变量,能够被任务的业务逻辑访问和修改。
这样看来状态的管理似乎非常简单,我们直接把它作为一个对象交给 JVM 就可以了。然而大数据的场景下,我们必须使用分布式架构来做扩展,在低延迟、高吞吐的基础上还要保证容错性,一系列复杂的问题就会随之而来了。
⚫ 状态的访问权限。我们知道 Flink 上的聚合和窗口操作,一般都是基于 KeyedStream的,数据会按照 key 的哈希值进行分区,聚合处理的结果也应该是只对当前 key 有效。然而同一个分区(也就是 slot)上执行的任务实例,可能会包含多个 key 的数据,它们同时访问和更改本地变量,就会导致计算结果错误。所以这时状态并不是单纯的本地变量。
⚫ 容错性,也就是故障后的恢复。状态只保存在内存中显然是不够稳定的,我们需要将它持久化保存,做一个备份;在发生故障后可以从这个备份中恢复状态。
⚫ 我们还应该考虑到分布式应用的横向扩展性。比如处理的数据量增大时,我们应该相应地对计算资源扩容,调大并行度。这时就涉及到了状态的重组调整。
可见状态的管理并不是一件轻松的事。好在 Flink 作为有状态的大数据流式处理框架,已经帮我们搞定了这一切。Flink 有一套完整的状态管理机制,将底层一些核心功能全部封装起来,包括状态的高效存储和访问、持久化保存和故障恢复,以及资源扩展时的调整。这样,我们只需要调用相应的 API 就可以很方便地使用状态,或对应用的容错机制进行配置,从而将更多的精力放在业务逻辑的开发上。
1.3 状态的分类1.托管状态(Managed State)和原始状态(Raw State)
Flink 的状态有两种:托管状态(Managed State)和原始状态(Raw State)。托管状态就是由 Flink 统一管理的,状态的存储访问、故障恢复和重组等一系列问题都由 Flink 实现,我们只要调接口就可以;而原始状态则是自定义的,相当于就是开辟了一块内存,需要我们自己管理,实现状态的序列化和故障恢复。
具体来讲,托管状态是由 Flink 的运行时(Runtime)来托管的;在配置容错机制后,状态会自动持久化保存,并在发生故障时自动恢复。当应用发生横向扩展时,状态也会自动地重组分配到所有的子任务实例上。对于具体的状态内容,Flink 也提供了值状态(ValueState)、列表状态(ListState)、映射状态(MapState)、聚合状态(AggregateState)等多种结构,内部支持各种数据类型。聚合、窗口等算子中内置的状态,就都是托管状态;我们也可以在富函数类(RichFunction)中通过上下文来自定义状态,这些也都是托管状态。
而对比之下,原始状态就全部需要自定义了。Flink 不会对状态进行任何自动操作,也不知道状态的具体数据类型,只会把它当作最原始的字节(Byte)数组来存储。我们需要花费大量的精力来处理状态的管理和维护。
所以只有在遇到托管状态无法实现的特殊需求时,我们才会考虑使用原始状态;一般情况下不推荐使用。绝大多数应用场景,我们都可以用 Flink 提供的算子或者自定义托管状态来实现需求。
2.算子状态(Operator State)和按键分区状态(Keyed State)
接下来我们的重点就是托管状态(Managed State)。
我们知道在 Flink 中,一个算子任务会按照并行度分为多个并行子任务执行,而不同的子任务会占据不同的任务槽(task slot)。由于不同的 slot 在计算资源上是物理隔离的,所以 Flink能管理的状态在并行任务间是无法共享的,每个状态只能针对当前子任务的实例有效。而很多有状态的操作(比如聚合、窗口)都是要先做 keyBy 进行按键分区的。按键分区之后,任务所进行的所有计算都应该只针对当前 key 有效,所以状态也应该按照 key 彼此隔离。在这种情况下,状态的访问方式又会有所不同。
基于这样的想法,我们又可以将托管状态分为两类:算子状态和按键分区状态。
(1)算子状态(Operator State)
状态作用范围限定为当前的算子任务实例,也就是只对当前并行子任务实例有效。这就意味着对于一个并行子任务,占据了一个“分区”,它所处理的所有数据都会访问到相同的状态,状态对于同一任务而言是共享的。
算子状态可以用在所有算子上,使用的时候其实就跟一个本地变量没什么区别——因为本地变量的作用域也是当前任务实例。在使用时,我们还需进一步实现 CheckpointedFunction 接口。
(2)按键分区状态(Keyed State)
状态是根据输入流中定义的键(key)来维护和访问的,所以只能定义在按键分区流(KeyedStream)中,也就 keyBy 之后才可以使用。
按键分区状态应用非常广泛。之前讲到的聚合算子必须在 keyBy 之后才能使用,就是因为聚合的结果是以 Keyed State 的形式保存的。另外,也可以通过富函数类(Rich Function)来自定义 Keyed State,所以只要提供了富函数类接口的算子,也都可以使用 Keyed State。所以即使是 map、filter 这样无状态的基本转换算子,我们也可以通过富函数类给它们“追加”Keyed State,或者实现 CheckpointedFunction 接口来定义 Operator State;从这个角度讲,Flink 中所有的算子都可以是有状态的,不愧是“有状态的流处理”。
无论是 Keyed State 还是 Operator State,它们都是在本地实例上维护的,也就是说每个并行子任务维护着对应的状态,算子的子任务之间状态不共享。关于状态的具体使用,我们会在下面继续展开讲解。
你是否还在寻找稳定的海外服务器提供商?创新互联www.cdcxhl.cn海外机房具备T级流量清洗系统配攻击溯源,准确流量调度确保服务器高可用性,企业级服务器适合批量采购,新人活动首月15元起,快前往官网查看详情吧
当前题目:Flink-状态编程的基本概念-创新互联
本文网址:http://scyanting.com/article/idjhh.html