Hadoop之MapReduce
1 MapReduce 概述
MapReduce 是一个分布式运算程序的编程框架,是用户开发基于 Hadoop 的数据分析应用的核心框架。
十载的新晃网站建设经验,针对设计、前端、开发、售后、文案、推广等六对一服务,响应快,48小时及时工作处理。全网整合营销推广的优势是能够根据用户设备显示端的尺寸不同,自动调整新晃建站的显示方式,使网站能够适用不同显示终端,在浏览器中调整网站的宽度,无论在任何一种浏览器上浏览网站,都能展现优雅布局与设计,从而大程度地提升浏览体验。创新互联建站从事“新晃网站设计”,“新晃网站推广”以来,每个客户项目都认真落实执行。
MapReduce 核心功能是将用户编写的业务逻辑代码和自带默认组件整合成一个完整的分布式运算程序,并发运行在一个Hadoop 集群上。
1.1 MapReduce 优缺点
优点:
MapReduce 易于编程
它简单的实现一些接口,就可以完成一个分布式程序,这个分布式程序可以分布到大量廉价的 PC 机器上运行,也就是说写一个分布式程序,跟写一个简单的串行程序是一模一样的,就是因为这个特点使得 MapReduce 编程变得非常流行。
良好的扩展性
当计算资源不能得到满足的时候,可以通过简单的增加机器来扩展它的计算能力。
高容错性
MapReduce 设计的初衷就是使程序能够部署在廉价的 PC 机器上,这就要求它具有很高的容错性,比如其中一台机器挂了,它可以把上面的计算任务转移到另外一个节点上运行,不至于这个任务运行失败,而且这个过程不需要人工参与,而完全是由 Hadoop 内部完成的。
适合 PB 级以上海量数据的离线处理
可以实现上千台服务器集群并发工作,提供数据处理能力。
缺点:
不擅长实时计算
MapReduce 无法像 MySQL 一样,在毫秒或者秒级内返回结果。
不擅长流式计算
流式计算的输入数据是动态的,而 MapReduce 的输入数据集是静态的,不能动态变化。这是因为 MapReduce 自身的设计特点决定了数据源必须是静态的。
不擅长DAG(有向图)计算
多个应用程序存在依赖关系,后一个应用程序的输入为前一个的输出,在这种情况下,MapReduce 并不是不能做,而是使用后,每个 MapReduce 作业的输出结果都会写入到磁盘,会造成大量的磁盘 IO,导致性能非常的低下。
1.2 MapReduce 核心思想
分布式的运算程序往往需要分成至少 2 个阶段。
第一个阶段的 MapTask 并发实例,完全并行运行,互不相干。
第二个阶段的 ReduceTask 并发实例互不相干,但是他们的数据依赖于上一个阶段的所有 MapTask 并发实例的输出。
MapReduce 编程模型只能包含一个 Map 阶段和一个 Reduce 阶段,如果用户的业务逻辑非常复杂,那就只能多个MapReduce 程序,串行运行。
1.3 MapReduce 进程
一个完整的 MapReduce 程序在分布式运行时有三类实例进程:
MrAppMaster 负责整个程序的过程调度及状态协调
MapTask 负责 Map 阶段的整个数据处理流程。
ReduceTask 负责 Reduce 阶段的整个数据处理流程。
1.4 常用数据序列化类型
Java 类型 | Hadoop Writable 类型 |
---|---|
Boolean | BooleanWritable |
Byte | ByteWritable |
Int | IntWritable |
Float | FloatWritable |
Long | LongWritable |
Double | DoubleWritable |
String | Text |
Map | MapWritable |
Array | ArrayWritable |
1.5 MapReduce 编程规范
用户编写的程序分成三个部分:
Mapper 阶段
- 用户自定义的 Mapper 要继承自己的父类
- Mapper 的输入数据是 KV 对的形式(KV的类型可自定义
- Mapper 中的业务逻辑写在 map() 方法中
- Mapper的输出数据是 KV对的形式(KV的类型可自定义)
- map() 方法(MapTask 进程)对每一个
调用一次
Reduce 阶段
- 用户自定义的 Reducer 要继承自己的父类
- Reducer 的输入数据类型对应 Mapper 的输出数据类型,也是 KV
- Reducer 的业务逻辑写在 reduce() 方法中
- ReduceTask 进程对每一组相同 k 的
组调用一次reduce()方法
Driver 阶段
- 相当于 YARN 集群的客户端,用于提交我们整个程序到 YARN 集群,提交的是封装了 MapReduce 程序相关运行参数的job对象
1.6 WordCount 案例实操
导入依赖
junit
junit
RELEASE
org.apache.logging.log4j
log4j-core
2.8.2
org.apache.hadoop
hadoop-common
2.7.2
org.apache.hadoop
hadoop-client
2.7.2
org.apache.hadoop
hadoop-hdfs
2.7.2
jdk.tools
jdk.tools
1.8
system
${JAVA_HOME}/lib/tools.jar
log4j.properties
log4j.rootLogger=INFO, stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=target/spring.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n
WcMapper
package com.djm.mapreduce;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
public class WcMapper extends Mapper {
private Text key = new Text();
private IntWritable one = new IntWritable(1);
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
String[] words = line.split(" ");
for (String word : words) {
this.key.set(word);
context.write(this.key, this.one);
}
}
}
WcReduce
package com.djm.mapreduce;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class WcReduce extends Reducer {
private IntWritable total = new IntWritable();
@Override
protected void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable count : values) {
sum += 1;
}
this.total.set(sum);
context.write(key, this.total);
}
}
WcDriver
package com.djm.mapreduce;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
public class WcDriver {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
// 获得任务
Job job = Job.getInstance(new Configuration());
// 设置Classpath
job.setJarByClass(WcDriver.class);
// 设置Mapper
job.setMapperClass(WcMapper.class);
// 设置Reducer
job.setReducerClass(WcReduce.class);
// 设置Mapper的输出key和value的类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
// 设置Reducer的输出key和value的类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
// 设置输入和输出路径
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
boolean result = job.waitForCompletion(true);
System.exit(result ? 0 : 1);
}
}
2 Hadoop 序列化
2.1 为什么不使用 Java 序列化框架进行序列化
Serializable 是一个重量级的 Java 序列框架,一个对象被序列化后,会产生很多额外的信息(各种校验信息,Header,继承体系等),会产生大量的 IO,所以不适合在网络中高效的传输,所以,Hadoop 自己开发了一个轻量级的序列化框架(Writable)。
Hadoop序列化特点:
1、紧凑:高效使用存储空间。
2、快速:读写数据的额外开销小
3、可扩展:随着通信协议的升级而可升级。
4、 互操作:支持多语言的交互。
2.2 自定义 bean 对象实现序列化接口
在开发过程中往往提供的基本序列化类型不能满足要求,一般情况都需要创建一个 Bean 实现 Writable 接口。
具体实现 bean 对象序列化步骤如下 7 步:
1、实现 Writable 接口
2、反序列化时,需要反射调用空参构造函数,必须提供空参构造
3、重写序列化方法
4、重写反序列方法
5、反序列化和序列化的顺序必须完全一致
6、要想把结果显示在文件中,需要重写 toString()
7、如果需要将自定义的 bean 放在 key 中传输,则还需要实现 Comparable 接口,因为 MapReduce 框中的 Shuffle 过程要求对 key 必须能排序
2.3 序列化案例实操
统计每一个手机号耗费的总上行流量、下行流量、总流量
输入数据格式:id 手机号码 网络ip 上行流量 下行流量 网络状态码
输出数据格式:手机号码 上行流量 下行流量 总流量
FlowBean
package com.djm.mapreduce.flow;
import org.apache.hadoop.io.Writable;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
public class FlowBean implements Writable {
private long upFlow;
private long downFlow;
private long sumFlow;
public FlowBean() {
}
public void set(long upFlow, long downFlow) {
this.upFlow = upFlow;
this.downFlow = downFlow;
this.sumFlow = this.upFlow + this.downFlow;
}
public long getUpFlow() {
return upFlow;
}
public void setUpFlow(long upFlow) {
this.upFlow = upFlow;
}
public long getDownFlow() {
return downFlow;
}
public void setDownFlow(long downFlow) {
this.downFlow = downFlow;
}
public long getSumFlow() {
return sumFlow;
}
public void setSumFlow(long sumFlow) {
this.sumFlow = sumFlow;
}
@Override
public String toString() {
return upFlow + "\t" + downFlow + "\t" + sumFlow;
}
public void write(DataOutput out) throws IOException {
out.writeLong(upFlow);
out.writeLong(downFlow);
out.writeLong(sumFlow);
}
public void readFields(DataInput in) throws IOException {
this.upFlow = in.readLong();
this.downFlow = in.readLong();
this.sumFlow = in.readLong();
}
}
FlowMapper
package com.djm.mapreduce.flow;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
public class FlowMapper extends Mapper {
private FlowBean flowBean = new FlowBean();
private Text phone = new Text();
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
String[] words = line.split("\t");
phone.set(words[1]);
long upFlow = Long.parseLong(words[words.length - 3]);
long downFlow = Long.parseLong(words[words.length - 2]);
flowBean.set(upFlow, downFlow);
context.write(phone, flowBean);
}
}
FlowReduce
package com.djm.mapreduce.flow;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class FlowReduce extends Reducer {
private FlowBean totalFlow = new FlowBean();
@Override
protected void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException {
long sumUpFlow = 0;
long sumDownFlow = 0;
for (FlowBean value : values) {
long upFlow = value.getUpFlow();
long downFlow = value.getDownFlow();
sumUpFlow += upFlow;
sumDownFlow += downFlow;
}
totalFlow.set(sumUpFlow, sumDownFlow);
context.write(key, totalFlow);
}
}
FlowDriver
package com.djm.mapreduce.flow;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
public class FlowDriver {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Job job = Job.getInstance(new Configuration());
job.setJarByClass(FlowDriver.class);
job.setMapperClass(FlowMapper.class);
job.setReducerClass(FlowReduce.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(FlowBean.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(FlowBean.class);
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
boolean result = job.waitForCompletion(true);
System.exit(result ? 0 : 1);
}
}
3 MapReduce 框架原理
3.1 InputFormat 数据输入
3.1.1 切片与MapTask并行度决定机制
一个 Job 的 Map 阶段并行度由客户端在提交 Job 时的切片数决定
每一个Split切片分配一个MapTask并行实例处理
默认情况下,切片大小=BlockSize
切片时不考虑数据集整体,而是逐个针对每一个文件单独切片
3.1.2 FileInputFormat 切片机制
切片机制:
- 简单的按照文件的内容长度进行切片
- 切片大小等于 Block 大小
- 切片时不考虑数据集整体,而是逐个针对每个文件单独切片
源码中如何计算切片大小的?
- Math.max(minSize, Math.min(maxSize, blockSize));
- mapreduce.input.fileinputformat.split.minsize=1 默认值为1
- mapreduce.input.fileinputformat.split.maxsize= Long.MAXValue 默认值Long.MAXValue
如何自定义切片大小?
- maxsize(切片最大值):参数如果调得比blockSize小,则会让切片变小,而且就等于配置的这个参数的值。
- minsize(切片最小值):参数调的比blockSize大,则可以让切片变得比blockSize还大。
3.1.3 CombineTextInputFormat 切片机制
CombineTextInputFormat 用于小文件过多的场景,它可以将多个小文件从逻辑上规划到一个切片中,这样,多个小文件就可以交给一个 MapTask 处理。
3.1.4 FileInputFormat 的其他实现类
TextInputFormat:
TextInputForma 是默认的 FileInputFormat 实现类,按行读取每条记录,键是存储该行在整个文件中的起始字节偏移量,LongWritable 类型,值是这行的内容,不包括任何行终止符(换行符和回车符),Text类型。
KeyValueTextInputFormat:
每一行均为一条记录,被分隔符分割为 key,value,可以通过在驱动类中设置conf.set(KeyValueLineRecordReader.KEY_VALUE_SEPERATOR, "\t"); 来设定分隔符,默认分隔符是 tab。
NLineInputFormat:
如果使用 NlineInputFormat,代表每个 map 进程处理的 InputSplit 不再按 Block 块去划分,而是按 NlineInputFormat 指定的行数N来划分,即输入文件的总行数 /N = 切片数,如果不整除,切片数 = 商 + 1。
3.1.5 自定义 InputFormat
无论 HDFS 还是 MapReduce,在处理小文件时效率都非常低,但又难免面临处理大量小文件的场景,此时,就需要有相应解决方案。可以自定义 InputFormat 实现小文件的合并。
程序实现:
WholeFileInputformat
package com.djm.mapreduce.inputformat;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.JobContext;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import java.io.IOException;
public class WholeFileInputformat extends FileInputFormat {
@Override
protected boolean isSplitable(JobContext context, Path filename) {
return false;
}
public RecordReader createRecordReader(InputSplit split, TaskAttemptContext context) throws IOException, InterruptedException {
return new WholeRecordReader();
}
}
WholeRecordReader
package com.djm.mapreduce.inputformat;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import java.io.IOException;
public class WholeRecordReader extends RecordReader {
private boolean notRead = true;
private Text key = new Text();
private BytesWritable value = new BytesWritable();
private FSDataInputStream fis;
private FileSplit fs;
/**
* 初始化方法,框架会在开始的时候调用一次
* @param split
* @param context
* @throws IOException
* @throws InterruptedException
*/
public void initialize(InputSplit split, TaskAttemptContext context) throws IOException, InterruptedException {
// 转换切换类型为文件切片
fs = (FileSplit) split;
// 通过切片获取文件路径
Path path = fs.getPath();
// 通过路径获取文件系统
FileSystem fileSystem = path.getFileSystem(context.getConfiguration());
// 开流
fis = fileSystem.open(path);
}
/**
* 读取下一组KV
* @return
* @throws IOException
* @throws InterruptedException
*/
public boolean nextKeyValue() throws IOException, InterruptedException {
if (notRead) {
// 读K
key.set(fs.getPath().toString());
// 读V
byte[] buf = new byte[(int) fs.getLength()];
fis.read(buf);
value.set(buf, 0, buf.length);
notRead = false;
return true;
} else {
return false;
}
}
/**
* 获取当前读到的key
* @return
* @throws IOException
* @throws InterruptedException
*/
public Text getCurrentKey() throws IOException, InterruptedException {
return this.key;
}
/**
* 获取当前读到的value
* @return
* @throws IOException
* @throws InterruptedException
*/
public BytesWritable getCurrentValue() throws IOException, InterruptedException {
return this.value;
}
/**
* 当前数据读取的进度
* @return
* @throws IOException
* @throws InterruptedException
*/
public float getProgress() throws IOException, InterruptedException {
return notRead ? 0 : 1;
}
/**
* 关闭资源
* @throws IOException
*/
public void close() throws IOException {
if (fis != null) {
fis.close();
}
}
}
WholeFileDriver
package com.djm.mapreduce.inputformat;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat;
import java.io.IOException;
public class WholeFileDriver {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Job job = Job.getInstance(new Configuration());
job.setJarByClass(WholeFileDriver.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(BytesWritable.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(BytesWritable.class);
job.setInputFormatClass(WholeFileInputformat.class);
job.setOutputFormatClass(SequenceFileOutputFormat.class);
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
boolean b = job.waitForCompletion(true);
System.exit(b ? 0 : 1);
}
}
3.2 MapReduce工作流程
上面的流程是整个 MapReduce 最全工作流程,但是 Shuffle 过程只是从第 7 步开始到第 16 步结束,具体 Shuffle 过程详解,如下:
1)MapTask 收集我们的 map() 方法输出的 KV 对,放到内存缓冲区中
2)从内存缓冲区不断溢出本地磁盘文件,可能会溢出多个文件
3)多个溢出文件会被合并成大的溢出文件
4)在溢出过程及合并的过程中,都要调用 Partitioner 进行分区和针对 key 进行排序
5)ReduceTask 根据自己的分区号,去各个 MapTask 机器上取相应的结果分区数据
6)ReduceTask 会取到同一个分区的来自不同 MapTask 的结果文件,ReduceTask 会将这些文件再进行合并(归并排序)
7)合并成大文件后,Shuffle 的过程也就结束了,后面进入 ReduceTask 的逻辑运算过程(从文件中取出一个一个的键值对 Group,调用用户自定义的 reduce() 方法)
3.3 Shuffle 机制
3.3.1 Partition 分区
分区可以将统计结果按照条件输出到不同的文件中
默认 Partition 分区:
public class HashPartitioner extends Partitioner {
public int getPartition(K key, V value, int numReduceTasks) {
return (key.hashCode() & Integer.MAX_VALUE) % numReduceTasks;
}
}
默认分区是根据 key 的 hashCode 对 ReduceTasks 个数取模决定的。
自定义 Partition 步骤:
- 自定义类继承 Partitioner,重写 getPartition() 方法
public class CustomPartitioner extends Partitioner {
@Override
public int getPartition(Text key, FlowBean value, int numPartitions) {
// 控制分区代码逻辑
return partition;
}
}
- 在驱动类中,指定 Partitioner
- 自定义 Partition 后,要根据自定义 Partitioner 的逻辑设置相应数量的 ReduceTask
注意:
- 如果 ReduceTask 的数量 > getPartition 的结果数,则会多产生几个空的输出文件 part-r-000xx;
- 如果 1< ReduceTask的数量 < getPartition 的结果数,则有一部分分区数据无处安放,会 Exception;
- 如果 ReduceTask 的数量 = 1,则不管 MapTask 端输出多少个分区文件,最终结果都交给这一个 ReduceTask,最终也就只会产生一个结果文件 part-r-00000;
- 分区号必须从零开始,逐一累加。
需求分析:
代码实现:
# ProvincePartitioner
package com.djm.mapreduce.partitioner;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner;
public class ProvincePartitioner extends Partitioner {
@Override
public int getPartition(FlowBean flowBean, Text text, int numPartitions) {
switch (text.toString().substring(0, 3)) {
case "136":
return 0;
case "137":
return 1;
case "138":
return 2;
case "139":
return 3;
default:
return 4;
}
}
}
# PartitionerFlowDriver
package com.djm.mapreduce.partitioner;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
public class PartitionerFlowDriver {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Job job = Job.getInstance(new Configuration());
job.setJarByClass(PartitionerFlowDriver.class);
job.setMapperClass(SortMapper.class);
job.setReducerClass(SortReduce.class);
job.setMapOutputKeyClass(FlowBean.class);
job.setMapOutputValueClass(Text.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(FlowBean.class);
job.setPartitionerClass(ProvincePartitioner.class);
job.setNumReduceTasks(5);
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
boolean result = job.waitForCompletion(true);
System.exit(result ? 0 : 1);
}
}
3.3.2 WritableComparable 排序
排序是 MapReduce 框架中最重要的操作之一,MapTask 和 ReduceTask 均会对数据按照 key 进行排序,该操作属于Hadoop 的默认行为,任何应用程序中的数据均会被排序,而不管逻辑上是否需要。
默认排序是按照字典顺序排序,且实现该排序的方法是快速排序:
对于 MapTask,它会将处理的结果暂时放到环形缓冲区中,当环形缓冲区使用率达到一定阈值后,再对缓冲区中的数据进行一次快速排序,并将这些有序数据溢写到磁盘上,而当数据处理完毕后,它会对磁盘上所有文件进行归并排序。
对于 ReduceTask,它从每个 MapTask 上远程拷贝相应的数据文件,如果文件大小超过一定阈值,则溢写磁盘上,否则存储在内存中,如果磁盘上文件数目达到一定阈值,则进行一次归并排序以生成一个更大文件,如果内存中文件大小或者数目超过一定阈值,则进行一次合并后将数据溢写到磁盘上,当所有数据拷贝完毕后,ReduceTask 统一对内存和磁盘上的所有数据进行一次归并排序。
排序分类:
需求分析:
代码实现:
package com.djm.mapreduce.partitioner;
import org.apache.hadoop.io.WritableComparable;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
@Data
public class FlowBean implements WritableComparable {
private long upFlow;
private long downFlow;
private long sumFlow;
public void set(long upFlow, long downFlow) {
this.upFlow = upFlow;
this.downFlow = downFlow;
this.sumFlow = this.upFlow + this.downFlow;
}
public void write(DataOutput out) throws IOException {
out.writeLong(upFlow);
out.writeLong(downFlow);
out.writeLong(sumFlow);
}
public void readFields(DataInput in) throws IOException {
this.upFlow = in.readLong();
this.downFlow = in.readLong();
this.sumFlow = in.readLong();
}
@Override
public int compareTo(FlowBean o) {
return this.sumFlow > o.sumFlow ? -1:1;
}
}
3.3.3 GroupingComparator 分组
对 Reduce 阶段的数据根据某一个或几个字段进行分组。
分组排序步骤:
自定义类继承WritableComparator
重写compare()方法
创建一个构造将比较对象的类传给父类
protected OrderGroupingComparator() { super(OrderBean.class, true); }
需求分析:
代码实现:
# OrderBean
package com.djm.mapreduce.order;
import org.apache.hadoop.io.WritableComparable;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
@Data
public class OrderBean implements WritableComparable {
private String orderId;
private String productId;
private double price;
@Override
public int compareTo(OrderBean o) {
int compare = this.orderId.compareTo(o.orderId);
if (compare == 0) {
return Double.compare(o.price, this.price);
} else {
return compare;
}
}
@Override
public void write(DataOutput out) throws IOException {
out.writeUTF(orderId);
out.writeUTF(productId);
out.writeDouble(price);
}
@Override
public void readFields(DataInput in) throws IOException {
this.orderId = in.readUTF();
this.productId = in.readUTF();
this.price = in.readDouble();
}
}
# OrderSortGroupingComparator
package com.djm.mapreduce.order;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;
public class OrderSortGroupingComparator extends WritableComparator {
public OrderSortGroupingComparator() {
super(OrderBean.class, true);
}
@Override
public int compare(WritableComparable a, WritableComparable b) {
OrderBean oa = (OrderBean) a;
OrderBean ob = (OrderBean) b;
return oa.getOrderId().compareTo(ob.getOrderId());
}
}
# OrderSortDriver
package com.djm.mapreduce.order;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
public class OrderSortDriver {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Job job = Job.getInstance(new Configuration());
job.setJarByClass(OrderSortDriver.class);
job.setMapperClass(OrderSortMapper.class);
job.setReducerClass(OrderSortReduce.class);
job.setMapOutputKeyClass(OrderBean.class);
job.setMapOutputValueClass(NullWritable.class);
job.setGroupingComparatorClass(OrderSortGroupingComparator.class);
job.setOutputKeyClass(OrderBean.class);
job.setOutputValueClass(NullWritable.class);
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
boolean result = job.waitForCompletion(true);
System.exit(result ? 0 : 1);
}
}
3.4 MapTask 工作机制
1)Read 阶段:MapTask 通过用户编写的 RecordReader,从输入 InputSplit 中解析出一个个 key/value。
2)Map阶段:该节点主要是将解析出的 key/value 交给用户编写 map() 函数处理,并产生一系列新的 key/value。
3)Collect 收集阶段:在用户编写 map() 函数中,当数据处理完成后,一般会调用 OutputCollector.collect() 输出结果,在该函数内部,它会将生成的 key/value 分区(调用Partitioner),并写入一个环形内存缓冲区中。
4)Spill 阶段:即溢写,当环形缓冲区满后,MapReduce 会将数据写到本地磁盘上,生成一个临时文件,需要注意的是,将数据写入本地磁盘之前,先要对数据进行一次本地排序,并在必要时对数据进行合并、压缩等操作。
- 利用快速排序算法对缓存区内的数据进行排序,排序方式是,先按照分区编号 Partition 进行排序,然后按照 key 进行排序,这样,经过排序后,数据以分区为单位聚集在一起,且同一分区内所有数据按照 key 有序。
- 按照分区编号由小到大依次将每个分区中的数据写入任务工作目录下的临时文件 output/spillN.out(N表示当前溢写次数)中,如果用户设置了 Combiner,则写入文件之前,对每个分区中的数据进行一次聚集操作。
- 将分区数据的元信息写到内存索引数据结构 SpillRecord 中,其中每个分区的元信息包括在临时文件中的偏移量、压缩前数据大小和压缩后数据大小,如果当前内存索引大小超过 1MB,则将内存索引写到文件 output/spillN.out.index中。
5)Combine 阶段:当所有数据处理完成后,MapTask 对所有临时文件进行一次合并,以确保最终只会生成一个数据文件。
6)当所有数据处理完后,MapTask 会将所有临时文件合并成一个大文件,并保存到文件 output/file.out 中,同时生成相应的索引文件 output/file.out.index。
7)在进行文件合并过程中,MapTask 以分区为单位进行合并,对于某个分区,它将采用多轮递归合并的方式,每轮合并io.sort.factor(默认10)个文件,并将产生的文件重新加入待合并列表中,对文件排序后,重复以上过程,直到最终得到一个大文件。
8)让每个 MapTask 最终只生成一个数据文件,可避免同时打开大量文件和同时读取大量小文件产生的随机读取带来的开销。
3.5 ReduceTask 工作机制
1)Copy 阶段:ReduceTask 从各个 MapTask 上远程拷贝一片数据,并针对某一片数据,如果其大小超过一定阈值,则写到磁盘上,否则直接放到内存中。
2)Merge 阶段:在远程拷贝数据的同时,ReduceTask 启动了两个后台线程对内存和磁盘上的文件进行合并,以防止内存使用过多或磁盘上文件过多。
3)Sort 阶段:按照 MapReduce 语义,用户编写 reduce() 函数输入数据是按 key 进行聚集的一组数据,为了将 key 相同的数据聚在一起,Hadoop 采用了基于排序的策略,由于各个 MapTask 已经实现对自己的处理结果进行了局部排序,因此,ReduceTask 只需对所有数据进行一次归并排序即可。
4)Reduce 阶段:reduce() 函数将计算结果写到 HDFS 上。
ReduceTask 的并行度同样影响整个 Job 的执行并发度和执行效率,但与 MapTask 的并发数由切片数决定不同,ReduceTask 数量的决定是可以直接手动设置:
job.setNumReduceTasks(4);
注意事项:
- ReduceTask=0,表示没有 Reduce 阶段,输出文件个数和 Map 个数一致
- ReduceTask 默认值就是 1,所以输出文件个数为一个
- 如果数据分布不均匀,就有可能在 Reduce 阶段产生数据倾斜
- ReduceTask 数量并不是任意设置,还要考虑业务逻辑需求,有些情况下,需要计算全局汇总结果,就只能有 1 个ReduceTask
- 具体多少个 ReduceTask,需要根据集群性能而定
- 如果分区数不是 1,但是 ReduceTask 为 1,不会执行分区过程
3.6 OutputFormat 数据输出
3.6.1 OutputFormat 接口实现类
3.6.2 自定义 OutputFormat
需求分析:
代码实现:
# FilterOutputFormat
package com.djm.mapreduce.outputformat;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
public class FilterOutputFormat extends FileOutputFormat {
@Override
public RecordWriter getRecordWriter(TaskAttemptContext job) throws IOException, InterruptedException {
return new FilterRecordWriter(job);
}
}
# FilterRecordWriter
package com.djm.mapreduce.outputformat;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import java.io.IOException;
public class FilterRecordWriter extends RecordWriter {
private FSDataOutputStream atguiguOut = null;
private FSDataOutputStream otherOut = null;
public FilterRecordWriter() {
}
public FilterRecordWriter(TaskAttemptContext job) {
FileSystem fs;
try {
fs = FileSystem.get(job.getConfiguration());
Path atguigu = new Path("C:\\Application\\Apache\\hadoop-2.7.2\\djm.log");
Path other = new Path("C:\\Application\\Apache\\hadoop-2.7.2\\other.log");
atguiguOut = fs.create(atguigu);
otherOut = fs.create(other);
} catch (IOException e) {
e.printStackTrace();
}
}
@Override
public void write(Text key, NullWritable value) throws IOException, InterruptedException {
if (key.toString().contains("atguigu")) {
atguiguOut.write(key.toString().getBytes());
} else {
otherOut.write(key.toString().getBytes());
}
}
@Override
public void close(TaskAttemptContext context) throws IOException, InterruptedException {
IOUtils.closeStream(atguiguOut);
IOUtils.closeStream(otherOut);
}
}
# FilterDriver
package com.djm.mapreduce.outputformat;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
public class FilterDriver {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Job job = Job.getInstance(new Configuration());
job.setJarByClass(FilterDriver.class);
job.setMapperClass(FilterMapper.class);
job.setReducerClass(FilterReduce.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(NullWritable.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(NullWritable.class);
job.setOutputFormatClass(FilterOutputFormat.class);
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
boolean result = job.waitForCompletion(true);
System.exit(result ? 0 : 1);
}
}
3.7 Join
3.7.1 Reduce Join
工作原理:
Map 端
为来自不同表或文件的 key/value 对,打标签以区别不同来源的记录,然后用连接字段作为 key,其余部分和新加的标志作为 value,最后进行输出。
Reduce端
在 Reduce 端以连接字段作为 key 的分组已经完成,我们只需要在每一个分组当中将那些来源于不同文件的记录分开,最后进行合并。
需求分析:
代码实现:
# TableBean
package com.djm.mapreduce.table;
import org.apache.hadoop.io.Writable;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
@Data
public class TableBean implements Writable {
private String orderId;
private String productId;
private int amount;
private String pname;
private String flag;
@Override
public void write(DataOutput out) throws IOException {
out.writeUTF(orderId);
out.writeUTF(productId);
out.writeInt(amount);
out.writeUTF(pname);
out.writeUTF(flag);
}
@Override
public void readFields(DataInput in) throws IOException {
this.orderId = in.readUTF();
this.productId = in.readUTF();
this.amount = in.readInt();
this.pname = in.readUTF();
this.flag = in.readUTF();
}
}
# TableMapper
package com.djm.mapreduce.table;
import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
public class TableMapper extends Mapper{
String name;
TableBean bean = new TableBean();
Text k = new Text();
@Override
protected void setup(Context context) throws IOException, InterruptedException {
FileSplit split = (FileSplit) context.getInputSplit();
name = split.getPath().getName();
}
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
if (name.startsWith("order")) {// 订单表处理
String[] fields = line.split("\t");
bean.setOrder_id(fields[0]);
bean.setP_id(fields[1]);
bean.setAmount(Integer.parseInt(fields[2]));
bean.setPname("");
bean.setFlag("order");
k.set(fields[1]);
}else {
String[] fields = line.split("\t");
bean.setP_id(fields[0]);
bean.setPname(fields[1]);
bean.setFlag("pd");
bean.setAmount(0);
bean.setOrder_id("");
k.set(fields[0]);
}
context.write(k, bean);
}
}
# TableReducer
package com.djm.mapreduce.table;
import org.apache.commons.beanutils.BeanUtils;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
import java.lang.reflect.InvocationTargetException;
import java.util.ArrayList;
public class TableReducer extends Reducer {
@Override
protected void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException {
ArrayList orderBeans = new ArrayList<>();
TableBean pdBean = new TableBean();
for (TableBean bean : values) {
if ("order".equals(bean.getFlag())) {
TableBean orderBean = new TableBean();
try {
BeanUtils.copyProperties(orderBean, bean);
} catch (IllegalAccessException | InvocationTargetException e) {
e.printStackTrace();
}
orderBeans.add(orderBean);
}
else {
try {
BeanUtils.copyProperties(pdBean, bean);
} catch (IllegalAccessException | InvocationTargetException e) {
e.printStackTrace();
}
}
}
for (TableBean bean :orderBeans) {
bean.setPname (pdBean.getPname());
context.write(bean, NullWritable.get());
}
}
}
package com.djm.mapreduce.table;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
import java.net.URI;
import java.net.URISyntaxException;
public class TableDriver {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException, URISyntaxException {
Job job = Job.getInstance(new Configuration());
job.setJarByClass(TableDriver.class);
job.setMapperClass(TableMapper.class);
job.setReducerClass(TableReducer.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(TableBean.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(NullWritable.class);
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.addCacheFile(new URI("file:///C:/Application/Apache/hadoop-2.7.2/input/pd.txt"));
boolean result = job.waitForCompletion(true);
System.exit(result ? 0 : 1);
}
}
3.7.2 Map Join
Map Join 适用于一张表十分小、一张表很大的场景。
优点:
在 Map 端缓存多张表,提前处理业务逻辑,这样增加 Map 端业务,减少 Reduce 端数据的压力,就可以尽可能的减少数据倾斜。
需求分析:
代码实现:
# TableMapper
package com.djm.mapreduce.table;
import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.URI;
import java.nio.charset.StandardCharsets;
import java.util.HashMap;
import java.util.Map;
public class TableMapper extends Mapper {
private Text k = new Text();
private Map pdMap = new HashMap<>();
@Override
protected void setup(Context context) throws IOException, InterruptedException {
URI[] cacheFiles = context.getCacheFiles();
String path = cacheFiles[0].getPath();
BufferedReader reader = new BufferedReader(new InputStreamReader(new FileInputStream(path), StandardCharsets.UTF_8));
String line;
while(StringUtils.isNotEmpty(line = reader.readLine())){
String[] fields = line.split("\t");
pdMap.put(fields[0], fields[1]);
}
reader.close();
}
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String[] fields = value.toString().split("\t");
String pId = fields[1];
String pdName = pdMap.get(pId);
k.set(fields[0] + "\t"+ pdName + "\t" + fields[2]);
context.write(k, NullWritable.get());
}
}
# TableDriver
package com.djm.mapreduce.table;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
import java.net.URI;
import java.net.URISyntaxException;
public class TableDriver {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException, URISyntaxException {
Job job = Job.getInstance(new Configuration());
job.setJarByClass(TableDriver.class);
job.setMapperClass(TableMapper.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(NullWritable.class);
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.addCacheFile(new URI("file:///C:/Application/Apache/hadoop-2.7.2/input/pd.txt"));
job.setNumReduceTasks(0);
boolean result = job.waitForCompletion(true);
System.exit(result ? 0 : 1);
}
}
3.8 ETL
在运行核心业务 MapReduce 程序之前,往往要先对数据进行清洗,清理掉不符合用户要求的数据。清理的过程往往只需要运行 Mapper 程序,不需要运行 Reduce 程序。
需求分析:
需要在 Map 阶段对输入的数据根据规则进行过滤清洗。
代码实现:
# LogBean
package com.djm.mapreduce.etl;
@Data
public class LogBean {
private String remoteAddr;
private String remoteUser;
private String timeLocal;
private String request;
private String status;
private String bodyBytesSent;
private String httpReferer;
private String httpUserAgent;
private boolean valid = true;
}
# LogMapper
package com.djm.mapreduce.etl;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
public class LogMapper extends Mapper {
private Text k = new Text();
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
LogBean bean = parseLog(line);
if (!bean.isValid()) {
return;
}
k.set(bean.toString());
context.write(k, NullWritable.get());
}
private LogBean parseLog(String line) {
LogBean logBean = new LogBean();
String[] fields = line.split(" ");
if (fields.length > 11) {
logBean.setRemoteAddr(fields[0]);
logBean.setRemoteUser(fields[1]);
logBean.setTimeLocal(fields[3].substring(1));
logBean.setRequest(fields[6]);
logBean.setStatus(fields[8]);
logBean.setBodyBytesSent(fields[9]);
logBean.setHttpReferer(fields[10]);
if (fields.length > 12) {
logBean.setHttpUserAgent(fields[11] + " " + fields[12]);
} else {
logBean.setHttpUserAgent(fields[11]);
}
if (Integer.parseInt(logBean.getStatus()) >= 400) {
logBean.setValid(false);
}
} else {
logBean.setValid(false);
}
return logBean;
}
}
# LogDriver
package com.djm.mapreduce.etl;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
public class LogDriver {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Job job = Job.getInstance(new Configuration());
job.setJarByClass(LogDriver.class);
job.setMapperClass(LogMapper.class);
job.setNumReduceTasks(0);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(NullWritable.class);
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.waitForCompletion(true);
}
}
3.9 MapReduce 开发总结
在编写 MapReduce 程序时,需要考虑如下几个方面:
Mapper
- 用户根据业务需求实现其中三个方法:map() setup() cleanup ()
Partitioner分区
有默认实现 HashPartitioner,逻辑是根据 key 的哈希值和 numReduces 来返回一个分区号
key.hashCode()&Integer.MAXVALUE % numReduces
- 如果业务上有特别的需求,可以自定义分区
Comparable
- 当我们用自定义的对象作为 key 来输出时,就必须要实现 WritableComparable 接口,重写其中的 compareTo() 方法
- 部分排序:对最终输出的每一个文件进行内部排序
- 全排序:对所有数据进行排序,通常只有一个 Reduce
- 二次排序:排序的条件有两个
Combiner
- Combiner 合并可以提高程序执行效率,减少 IO 传输,但是使用时必须不能影响原有的业务处理结果
GroupingComparator
- 在 Reduce 端对 key 进行分组
Reducer
- 用户根据业务需求实现其中三个方法:reduce() setup() cleanup ()
OutputFormat
- 默认实现类是 TextOutputFormat,功能逻辑是:将每一个 KV 对,向目标文本文件输出一行
- 将 SequenceFileOutputFormat 输出作为后续 MapReduce任务的输入,这便是一种好的输出格式,因为它的格式紧凑,很容易被压缩
- 用户还可以自定义 OutputFormat
文章名称:Hadoop之MapReduce
网页路径:http://scyanting.com/article/igopdg.html