从架构师的角度分析AndroidHandler源码的正确姿势

Handler的原理是什么?能深入分析下 Handler的实现机制吗?
面试官问该问题是想问清楚handler的源码,handler机制如何实现,对消息泵Looper理不理解
(更多完整项目下载。未完待续。源码。图文知识后续上传github。)

创新互联公司坚信:善待客户,将会成为终身客户。我们能坚持多年,是因为我们一直可值得信赖。我们从不忽悠初访客户,我们用心做好本职工作,不忘初心,方得始终。10年网站建设经验创新互联公司是成都老牌网站营销服务商,为您提供成都网站制作、做网站、网站设计、H5响应式网站、网站制作、品牌网站建设微信小程序定制开发服务,给众多知名企业提供过好品质的建站服务。

从架构师的角度分析Android Handler 源码的正确姿势

1. Handler 机制简介

  • 定义 一套 Android 消息传递机制
  • 作用
    从架构师的角度分析Android Handler 源码的正确姿势

在多线程的应用场景中,将工作线程中需更新UI的操作信息 传递到 UI主线程,从而实现 工作线程对UI的更新处理,最终实现异步消息的处理

使用Handler的原因:将工作线程需操作UI的消息 传递 到主线程,使得主线程可根据工作线程的需求 更新UI,从而避免线程操作不安全的问题

2. 储备知识

在阅读Handler机制的源码分析前,请务必了解Handler的一些储备知识:相关概念、使用方式 & 工作原理
#####2.1 相关概念

关于 Handler 机制中的相关概念如下:

在下面的讲解中,我将直接使用英文名讲解,即 HandlerMessageMessage QueueLooper,希望大家先熟悉相关概念

2.2 使用方式
  • Handler使用方式 因发送消息到消息队列的方式不同而不同,共分为2种:使用Handler.sendMessage()使用Handler.post()
  • 下面的源码分析将依据使用步骤讲解

3. Handler机制的核心类

从架构师的角度分析Android Handler 源码的正确姿势
在源码分析前,先来了解Handler机制中的核心类

3.1 类说明

Handler机制 中有3个重要的类:

  • 处理器 类(Handler)
  • 消息队列 类(MessageQueue)
  • 循环器 类(Looper)
    3.2Handler工作流程

    从架构师的角度分析Android Handler 源码的正确姿势

4.源码分析

从架构师的角度分析Android Handler 源码的正确姿势

  • 下面的源码分析将根据 Handler的使用步骤进行

  • Handler使用方式 因发送消息到消息队列的方式不同而不同,共分为2种:使用Handler.sendMessage()、使用Handler.post()

  • 下面的源码分析将依据上述2种使用方式进行
方式1:使用 Handler.sendMessage()

使用步骤

/** 
  * 此处以 匿名内部类 的使用方式为例
  */
  // 步骤1:在主线程中 通过匿名内部类 创建Handler类对象
  private Handler mhandler = new  Handler(){
                // 通过复写handlerMessage()从而确定更新UI的操作
                @Override
                public void handleMessage(Message msg) {
                        ...// 需执行的UI操作
                    }
            };

  // 步骤2:创建消息对象
    Message msg = Message.obtain(); // 实例化消息对象
    msg.what = 1; // 消息标识
    msg.obj = "AA"; // 消息内容存放

  // 步骤3:在工作线程中 通过Handler发送消息到消息队列中
  // 多线程可采用AsyncTask、继承Thread类、实现Runnable
   mHandler.sendMessage(msg);

  // 步骤4:开启工作线程(同时启动了Handler)
  // 多线程可采用AsyncTask、继承Thread类、实现Runnable
  • 源码分析 下面,我将根据上述每个步骤进行源码分析
步骤1:在主线程中 通过匿名内部类 创建Handler类对象
/** 
  * 具体使用
  */
    private Handler mhandler = new  Handler(){
        // 通过复写handlerMessage()从而确定更新UI的操作
        @Override
        public void handleMessage(Message msg) {
                ...// 需执行的UI操作
            }
    };

/** 
  * 源码分析:Handler的构造方法
  * 作用:初始化Handler对象 & 绑定线程
  * 注:
  *   a. Handler需绑定 线程才能使用;绑定后,Handler的消息处理会在绑定的线程中执行
  *   b. 绑定方式 = 先指定Looper对象,从而绑定了 Looper对象所绑定的线程(因为Looper对象本已绑定了对应线程)
  *   c. 即:指定了Handler对象的 Looper对象 = 绑定到了Looper对象所在的线程
  */
  public Handler() {

            this(null, false);
            // ->>分析1

    }
/** 
  * 分析1:this(null, false) = Handler(null,false)
  */
  public Handler(Callback callback, boolean async) {

            ...// 仅贴出关键代码

            // 1. 指定Looper对象
                mLooper = Looper.myLooper();
                if (mLooper == null) {
                    throw new RuntimeException(
                        "Can't create handler inside thread that has not called Looper.prepare()");
                }
                // Looper.myLooper()作用:获取当前线程的Looper对象;若线程无Looper对象则抛出异常
                // 即 :若线程中无创建Looper对象,则也无法创建Handler对象
                // 故 若需在子线程中创建Handler对象,则需先创建Looper对象
                // 注:可通过Loop.getMainLooper()可以获得当前进程的主线程的Looper对象

            // 2. 绑定消息队列对象(MessageQueue)
                mQueue = mLooper.mQueue;
                // 获取该Looper对象中保存的消息队列对象(MessageQueue)
                // 至此,保证了handler对象 关联上 Looper对象中MessageQueue
    }
  • 从上面可看出: 当创建Handler对象时,则通过 构造方法 自动关联当前线程的Looper对象 & 对应的消息队列对象(MessageQueue),从而 自动绑定了 实现创建Handler对象操作的线程
    0 那么,当前线程的Looper对象 & 对应的消息队列对象(MessageQueue) 是什么时候创建的呢?

    在上述使用步骤中,并无 创建Looper对象 & 对应的消息队列对象(MessageQueue)这1步

步骤1前的隐式操作1:创建循环器对象(Looper) & 消息队列对象(MessageQueue)

从架构师的角度分析Android Handler 源码的正确姿势
从架构师的角度分析Android Handler 源码的正确姿势

  • 源码分析
/** 
  * 源码分析1:Looper.prepare()
  * 作用:为当前线程(子线程) 创建1个循环器对象(Looper),同时也生成了1个消息队列对象(MessageQueue)
  * 注:需在子线程中手动调用该方法
  */
    public static final void prepare() {

        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        // 1. 判断sThreadLocal是否为null,否则抛出异常
        //即 Looper.prepare()方法不能被调用两次 = 1个线程中只能对应1个Looper实例
        // 注:sThreadLocal = 1个ThreadLocal对象,用于存储线程的变量

        sThreadLocal.set(new Looper(true));
        // 2. 若为初次Looper.prepare(),则创建Looper对象 & 存放在ThreadLocal变量中
        // 注:Looper对象是存放在Thread线程里的
        // 源码分析Looper的构造方法->>分析a
    }

  /** 
    * 分析a:Looper的构造方法
    **/

        private Looper(boolean quitAllowed) {

            mQueue = new MessageQueue(quitAllowed);
            // 1. 创建1个消息队列对象(MessageQueue)
            // 即 当创建1个Looper实例时,会自动创建一个与之配对的消息队列对象(MessageQueue)

            mRun = true;
            mThread = Thread.currentThread();
        }

/** 
  * 源码分析2:Looper.prepareMainLooper()
  * 作用:为 主线程(UI线程) 创建1个循环器对象(Looper),同时也生成了1个消息队列对象(MessageQueue)
  * 注:该方法在主线程(UI线程)创建时自动调用,即 主线程的Looper对象自动生成,不需手动生成
  */
    // 在Android应用进程启动时,会默认创建1个主线程(ActivityThread,也叫UI线程)
    // 创建时,会自动调用ActivityThread的1个静态的main()方法 = 应用程序的入口
    // main()内则会调用Looper.prepareMainLooper()为主线程生成1个Looper对象

      /** 
        * 源码分析:main()
        **/
        public static void main(String[] args) {
            ... // 仅贴出关键代码

            Looper.prepareMainLooper(); 
            // 1. 为主线程创建1个Looper对象,同时生成1个消息队列对象(MessageQueue)
            // 方法逻辑类似Looper.prepare()
            // 注:prepare():为子线程中创建1个Looper对象

            ActivityThread thread = new ActivityThread(); 
            // 2. 创建主线程

            Looper.loop(); 
            // 3. 自动开启 消息循环 ->>下面将详细分析

        }
总结:
  • 创建主线程时,会自动调用ActivityThread的1个静态的main();而main()内则会调用Looper.prepareMainLooper()为主线程生成1个Looper对象,同时也会生成其对应的MessageQueue对象

    1.即 主线程的Looper对象自动生成,不需手动生成;而子线程的Looper对象则需手动通过Looper.prepare()创建
    2.在子线程若不手动创建Looper对象 则无法生成Handler对象

  • 根据Handler的作用(在主线程更新UI),故Handler实例的创建场景 主要在主线程
  • 生成Looper& MessageQueue对象后,则会自动进入消息循环:Looper.loop(),即又是另外一个隐式操作。
    步骤1前的隐式操作2:消息循环

    此处主要分析的是Looper类中的loop()方法

/**

  • 源码分析: Looper.loop()
  • 作用:消息循环,即从消息队列中获取消息、分发消息到Handler
  • 特别注意:
  • a. 主线程的消息循环不允许退出,即无限循环
  • b. 子线程的消息循环允许退出:调用消息队列MessageQueue的quit()
    */
    public static void loop() {

    ...// 仅贴出关键代码
    
    // 1. 获取当前Looper的消息队列
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        // myLooper()作用:返回sThreadLocal存储的Looper实例;若me为null 则抛出异常
        // 即loop()执行前必须执行prepare(),从而创建1个Looper实例
    
        final MessageQueue queue = me.mQueue;
        // 获取Looper实例中的消息队列对象(MessageQueue)
    
    // 2. 消息循环(通过for循环)
        for (;;) {
    
        // 2.1 从消息队列中取出消息
        Message msg = queue.next(); 
        if (msg == null) {
            return;
        }
        // next():取出消息队列里的消息
        // 若取出的消息为空,则线程阻塞
        // ->> 分析1 
    
        // 2.2 派发消息到对应的Handler
        msg.target.dispatchMessage(msg);
        // 把消息Message派发给消息对象msg的target属性
        // target属性实际是1个handler对象
        // ->>分析2
    
    // 3. 释放消息占据的资源
    msg.recycle();
    }

    }

/**

  • 分析1:queue.next()
  • 定义:属于消息队列类(MessageQueue)中的方法
  • 作用:出队消息,即从 消息队列中 移出该消息
    */
    Message next() {

    ...// 仅贴出关键代码
    
    // 该参数用于确定消息队列中是否还有消息
    // 从而决定消息队列应处于出队消息状态 or 等待状态
    int nextPollTimeoutMillis = 0;
    
    for (;;) {
        if (nextPollTimeoutMillis != 0) {
            Binder.flushPendingCommands();
        }
    
    // nativePollOnce方法在native层,若是nextPollTimeoutMillis为-1,此时消息队列处于等待状态 
    nativePollOnce(ptr, nextPollTimeoutMillis);
    
    synchronized (this) {
    
        final long now = SystemClock.uptimeMillis();
        Message prevMsg = null;
        Message msg = mMessages;
    
        // 出队消息,即 从消息队列中取出消息:按创建Message对象的时间顺序
        if (msg != null) {
            if (now < msg.when) {
                nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
            } else {
                // 取出了消息
                mBlocked = false;
                if (prevMsg != null) {
                    prevMsg.next = msg.next;
                } else {
                    mMessages = msg.next;
                }
                msg.next = null;
                if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                msg.markInUse();
                return msg;
            }
        } else {
    
            // 若 消息队列中已无消息,则将nextPollTimeoutMillis参数设为-1
            // 下次循环时,消息队列则处于等待状态
            nextPollTimeoutMillis = -1;
        }
    
        ......
    }
       .....

    }
    }// 回到分析原处

/**

  • 分析2:dispatchMessage(msg)
  • 定义:属于处理者类(Handler)中的方法
  • 作用:派发消息到对应的Handler实例 & 根据传入的msg作出对应的操作
    */
    public void dispatchMessage(Message msg) {

    // 1. 若msg.callback属性不为空,则代表使用了post(Runnable r)发送消息
    // 则执行handleCallback(msg),即回调Runnable对象里复写的run()
    // 上述结论会在讲解使用“post(Runnable r)”方式时讲解
    if (msg.callback != null) {
    handleCallback(msg);
    } else {
    if (mCallback != null) {
    if (mCallback.handleMessage(msg)) {
    return;
    }
    }

        // 2. 若msg.callback属性为空,则代表使用了sendMessage(Message msg)发送消息(即此处需讨论的)
        // 则执行handleMessage(msg),即回调复写的handleMessage(msg) ->> 分析3
        handleMessage(msg);
    
    }

    }

    /**

    • 分析3:handleMessage(msg)
    • 注:该方法 = 空方法,在创建Handler实例时复写 = 自定义消息处理方式
      **/
      public void handleMessage(Message msg) {
      ... // 创建Handler实例时复写
      }

      
      ### 总结:
  • 消息循环的操作 = 消息出队 + 分发给对应的Handler实例

  • 分发给对应的Handler的过程:根据出队消息的归属者通过dispatchMessage(msg)进行分发,最终回调复写的handleMessage(Message msg),从而实现 消息处理 的操作

  • 特别注意:在进行消息分发时
(dispatchMessage(msg))

,会进行1次发送方式的判断:

msg.callback属性不为空,则代表使用了post(Runnable r)发送消息,则直接回调Runnable对象里复写的run()
msg.callback属性为空,则代表使用了sendMessage(Message msg)发送消息,则回调复写的handleMessage(msg)
至此,关于步骤1的源码分析讲解完毕

步骤2:创建消息对象

/** 
  * 具体使用
  */
    Message msg = Message.obtain(); // 实例化消息对象
    msg.what = 1; // 消息标识
    msg.obj = "AA"; // 消息内容存放

/** 
  * 源码分析:Message.obtain()
  * 作用:创建消息对象
  * 注:创建Message对象可用关键字new 或 Message.obtain()
  */
  public static Message obtain() {

        // Message内部维护了1个Message池,用于Message消息对象的复用
        // 使用obtain()则是直接从池内获取
        synchronized (sPoolSync) {
            if (sPool != null) {
                Message m = sPool;
                sPool = m.next;
                m.next = null;
                m.flags = 0; // clear in-use flag
                sPoolSize--;
                return m;
            }
            // 建议:使用obtain()”创建“消息对象,避免每次都使用new重新分配内存
        }
        // 若池内无消息对象可复用,则还是用关键字new创建
        return new Message();

    }
    ### 步骤3:在工作线程中 发送消息到消息队列中

多线程的实现方式:AsyncTask、继承Thread类、实现Runnable

/** 
  * 具体使用
  */

    mHandler.sendMessage(msg);

/** 
  * 源码分析:mHandler.sendMessage(msg)
  * 定义:属于处理器类(Handler)的方法
  * 作用:将消息 发送 到消息队列中(Message ->> MessageQueue)
  */
  public final boolean sendMessage(Message msg)
    {
        return sendMessageDelayed(msg, 0);
        // ->>分析1
    }

         /** 
           * 分析1:sendMessageDelayed(msg, 0)
           **/
           public final boolean sendMessageDelayed(Message msg, long delayMillis)
            {
                if (delayMillis < 0) {
                    delayMillis = 0;
                }

                return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
                // ->> 分析2
            }

         /** 
           * 分析2:sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis)
           **/
           public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
                    // 1. 获取对应的消息队列对象(MessageQueue)
                    MessageQueue queue = mQueue;

                    // 2. 调用了enqueueMessage方法 ->>分析3
                    return enqueueMessage(queue, msg, uptimeMillis);
                }

         /** 
           * 分析3:enqueueMessage(queue, msg, uptimeMillis)
           **/
            private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
                 // 1. 将msg.target赋值为this
                 // 即 :把 当前的Handler实例对象作为msg的target属性
                 msg.target = this;
                 // 请回忆起上面说的Looper的loop()中消息循环时,会从消息队列中取出每个消息msg,然后执行msg.target.dispatchMessage(msg)去处理消息
                 // 实际上则是将该消息派发给对应的Handler实例        

                // 2. 调用消息队列的enqueueMessage()
                // 即:Handler发送的消息,最终是保存到消息队列->>分析4
                return queue.enqueueMessage(msg, uptimeMillis);
        }

        /** 
          * 分析4:queue.enqueueMessage(msg, uptimeMillis)
          * 定义:属于消息队列类(MessageQueue)的方法
          * 作用:入队,即 将消息 根据时间 放入到消息队列中(Message ->> MessageQueue)
          * 采用单链表实现:提高插入消息、删除消息的效率
          */
          boolean enqueueMessage(Message msg, long when) {

                ...// 仅贴出关键代码

                synchronized (this) {

                    msg.markInUse();
                    msg.when = when;
                    Message p = mMessages;
                    boolean needWake;

                    // 判断消息队列里有无消息
                        // a. 若无,则将当前插入的消息 作为队头 & 若此时消息队列处于等待状态,则唤醒
                        if (p == null || when == 0 || when < p.when) {
                            msg.next = p;
                            mMessages = msg;
                            needWake = mBlocked;
                        } else {
                            needWake = mBlocked && p.target == null && msg.isAsynchronous();
                            Message prev;

                        // b. 判断消息队列里有消息,则根据 消息(Message)创建的时间 插入到队列中
                            for (;;) {
                                prev = p;
                                p = p.next;
                                if (p == null || when < p.when) {
                                    break;
                                }
                                if (needWake && p.isAsynchronous()) {
                                    needWake = false;
                                }
                            }

                            msg.next = p; 
                            prev.next = msg;
                        }

                        if (needWake) {
                            nativeWake(mPtr);
                        }
                    }
                    return true;
            }

// 之后,随着Looper对象的无限消息循环
// 不断从消息队列中取出Handler发送的消息 & 分发到对应Handler
// 最终回调Handler.handleMessage()处理消息

(更多完整项目下载。未完待续。源码。图文知识后续上传github。)


分享题目:从架构师的角度分析AndroidHandler源码的正确姿势
URL标题:http://scyanting.com/article/ihpioj.html