PostgreSQL的ExecHashJoin依赖其他函数的实现逻辑是什么
本篇内容介绍了“PostgreSQL的ExecHashJoin依赖其他函数的实现逻辑是什么”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
在魏县等地区,都构建了全面的区域性战略布局,加强发展的系统性、市场前瞻性、产品创新能力,以专注、极致的服务理念,为客户提供成都做网站、网站设计、外贸营销网站建设 网站设计制作定制设计,公司网站建设,企业网站建设,品牌网站建设,全网整合营销推广,外贸营销网站建设,魏县网站建设费用合理。
一、数据结构
JoinState
Hash/NestLoop/Merge Join的基类
/* ---------------- * JoinState information * * Superclass for state nodes of join plans. * Hash/NestLoop/Merge Join的基类 * ---------------- */ typedef struct JoinState { PlanState ps;//基类PlanState JoinType jointype;//连接类型 //在找到一个匹配inner tuple的时候,如需要跳转到下一个outer tuple,则该值为T bool single_match; /* True if we should skip to next outer tuple * after finding one inner match */ //连接条件表达式(除了ps.qual) ExprState *joinqual; /* JOIN quals (in addition to ps.qual) */ } JoinState;
HashJoinState
Hash Join运行期状态结构体
/* these structs are defined in executor/hashjoin.h: */ typedef struct HashJoinTupleData *HashJoinTuple; typedef struct HashJoinTableData *HashJoinTable; typedef struct HashJoinState { JoinState js; /* 基类;its first field is NodeTag */ ExprState *hashclauses;//hash连接条件 List *hj_OuterHashKeys; /* 外表条件链表;list of ExprState nodes */ List *hj_InnerHashKeys; /* 内表连接条件;list of ExprState nodes */ List *hj_HashOperators; /* 操作符OIDs链表;list of operator OIDs */ HashJoinTable hj_HashTable;//Hash表 uint32 hj_CurHashValue;//当前的Hash值 int hj_CurBucketNo;//当前的bucket编号 int hj_CurSkewBucketNo;//行倾斜bucket编号 HashJoinTuple hj_CurTuple;//当前元组 TupleTableSlot *hj_OuterTupleSlot;//outer relation slot TupleTableSlot *hj_HashTupleSlot;//Hash tuple slot TupleTableSlot *hj_NullOuterTupleSlot;//用于外连接的outer虚拟slot TupleTableSlot *hj_NullInnerTupleSlot;//用于外连接的inner虚拟slot TupleTableSlot *hj_FirstOuterTupleSlot;// int hj_JoinState;//JoinState状态 bool hj_MatchedOuter;//是否匹配 bool hj_OuterNotEmpty;//outer relation是否为空 } HashJoinState;
HashJoinTable
Hash表数据结构
typedef struct HashJoinTableData { int nbuckets; /* 内存中的hash桶数;# buckets in the in-memory hash table */ int log2_nbuckets; /* 2的对数(nbuckets必须是2的幂);its log2 (nbuckets must be a power of 2) */ int nbuckets_original; /* 首次hash时的桶数;# buckets when starting the first hash */ int nbuckets_optimal; /* 优化后的桶数(每个批次);optimal # buckets (per batch) */ int log2_nbuckets_optimal; /* 2的对数;log2(nbuckets_optimal) */ /* buckets[i] is head of list of tuples in i'th in-memory bucket */ //bucket [i]是内存中第i个桶中的元组链表的head item union { /* unshared array is per-batch storage, as are all the tuples */ //未共享数组是按批处理存储的,所有元组均如此 struct HashJoinTupleData **unshared; /* shared array is per-query DSA area, as are all the tuples */ //共享数组是每个查询的DSA区域,所有元组均如此 dsa_pointer_atomic *shared; } buckets; bool keepNulls; /*如不匹配则存储NULL元组,该值为T;true to store unmatchable NULL tuples */ bool skewEnabled; /*是否使用倾斜优化?;are we using skew optimization? */ HashSkewBucket **skewBucket; /* 倾斜的hash表桶数;hashtable of skew buckets */ int skewBucketLen; /* skewBucket数组大小;size of skewBucket array (a power of 2!) */ int nSkewBuckets; /* 活动的倾斜桶数;number of active skew buckets */ int *skewBucketNums; /* 活动倾斜桶数组索引;array indexes of active skew buckets */ int nbatch; /* 批次数;number of batches */ int curbatch; /* 当前批次,第一轮为0;current batch #; 0 during 1st pass */ int nbatch_original; /* 在开始inner扫描时的批次;nbatch when we started inner scan */ int nbatch_outstart; /* 在开始outer扫描时的批次;nbatch when we started outer scan */ bool growEnabled; /* 关闭nbatch增加的标记;flag to shut off nbatch increases */ double totalTuples; /* 从inner plan获得的元组数;# tuples obtained from inner plan */ double partialTuples; /* 通过hashjoin获得的inner元组数;# tuples obtained from inner plan by me */ double skewTuples; /* 倾斜元组数;# tuples inserted into skew tuples */ /* * These arrays are allocated for the life of the hash join, but only if * nbatch > 1. A file is opened only when we first write a tuple into it * (otherwise its pointer remains NULL). Note that the zero'th array * elements never get used, since we will process rather than dump out any * tuples of batch zero. * 这些数组在散列连接的生命周期内分配,但仅当nbatch > 1时分配。 * 只有当第一次将元组写入文件时,文件才会打开(否则它的指针将保持NULL)。 * 注意,第0个数组元素永远不会被使用,因为批次0的元组永远不会转储. */ BufFile **innerBatchFile; /* 每个批次的inner虚拟临时文件缓存;buffered virtual temp file per batch */ BufFile **outerBatchFile; /* 每个批次的outer虚拟临时文件缓存;buffered virtual temp file per batch */ /* * Info about the datatype-specific hash functions for the datatypes being * hashed. These are arrays of the same length as the number of hash join * clauses (hash keys). * 有关正在散列的数据类型的特定于数据类型的散列函数的信息。 * 这些数组的长度与散列连接子句(散列键)的数量相同。 */ FmgrInfo *outer_hashfunctions; /* outer hash函数FmgrInfo结构体;lookup data for hash functions */ FmgrInfo *inner_hashfunctions; /* inner hash函数FmgrInfo结构体;lookup data for hash functions */ bool *hashStrict; /* 每个hash操作符是严格?is each hash join operator strict? */ Size spaceUsed; /* 元组使用的当前内存空间大小;memory space currently used by tuples */ Size spaceAllowed; /* 空间使用上限;upper limit for space used */ Size spacePeak; /* 峰值的空间使用;peak space used */ Size spaceUsedSkew; /* 倾斜哈希表的当前空间使用情况;skew hash table's current space usage */ Size spaceAllowedSkew; /* 倾斜哈希表的使用上限;upper limit for skew hashtable */ MemoryContext hashCxt; /* 整个散列连接存储的上下文;context for whole-hash-join storage */ MemoryContext batchCxt; /* 该批次存储的上下文;context for this-batch-only storage */ /* used for dense allocation of tuples (into linked chunks) */ //用于密集分配元组(到链接块中) HashMemoryChunk chunks; /* 整个批次使用一个链表;one list for the whole batch */ /* Shared and private state for Parallel Hash. */ //并行hash使用的共享和私有状态 HashMemoryChunk current_chunk; /* 后台进程的当前chunk;this backend's current chunk */ dsa_area *area; /* 用于分配内存的DSA区域;DSA area to allocate memory from */ ParallelHashJoinState *parallel_state;//并行执行状态 ParallelHashJoinBatchAccessor *batches;//并行访问器 dsa_pointer current_chunk_shared;//当前chunk的开始指针 } HashJoinTableData; typedef struct HashJoinTableData *HashJoinTable;
HashJoinTupleData
Hash连接元组数据
/* ---------------------------------------------------------------- * hash-join hash table structures * * Each active hashjoin has a HashJoinTable control block, which is * palloc'd in the executor's per-query context. All other storage needed * for the hashjoin is kept in private memory contexts, two for each hashjoin. * This makes it easy and fast to release the storage when we don't need it * anymore. (Exception: data associated with the temp files lives in the * per-query context too, since we always call buffile.c in that context.) * 每个活动的hashjoin都有一个可散列的控制块,它在执行程序的每个查询上下文中都是通过palloc分配的。 * hashjoin所需的所有其他存储都保存在私有内存上下文中,每个hashjoin有两个。 * 当不再需要它的时候,这使得释放它变得简单和快速。 * (例外:与临时文件相关的数据也存在于每个查询上下文中,因为在这种情况下总是调用buffile.c。) * * The hashtable contexts are made children of the per-query context, ensuring * that they will be discarded at end of statement even if the join is * aborted early by an error. (Likewise, any temporary files we make will * be cleaned up by the virtual file manager in event of an error.) * hashtable上下文是每个查询上下文的子上下文,确保在语句结束时丢弃它们,即使连接因错误而提前中止。 * (同样,如果出现错误,虚拟文件管理器将清理创建的任何临时文件。) * * Storage that should live through the entire join is allocated from the * "hashCxt", while storage that is only wanted for the current batch is * allocated in the "batchCxt". By resetting the batchCxt at the end of * each batch, we free all the per-batch storage reliably and without tedium. * 通过整个连接的存储空间应从“hashCxt”分配,而只需要当前批处理的存储空间在“batchCxt”中分配。 * 通过在每个批处理结束时重置batchCxt,可以可靠地释放每个批处理的所有存储,而不会感到单调乏味。 * * During first scan of inner relation, we get its tuples from executor. * If nbatch > 1 then tuples that don't belong in first batch get saved * into inner-batch temp files. The same statements apply for the * first scan of the outer relation, except we write tuples to outer-batch * temp files. After finishing the first scan, we do the following for * each remaining batch: * 1. Read tuples from inner batch file, load into hash buckets. * 2. Read tuples from outer batch file, match to hash buckets and output. * 在内部关系的第一次扫描中,从执行者那里得到了它的元组。 * 如果nbatch > 1,那么不属于第一批的元组将保存到批内临时文件中。 * 相同的语句适用于外关系的第一次扫描,但是我们将元组写入外部批处理临时文件。 * 完成第一次扫描后,我们对每批剩余的元组做如下处理: * 1.从内部批处理文件读取元组,加载到散列桶中。 * 2.从外部批处理文件读取元组,匹配哈希桶和输出。 * * It is possible to increase nbatch on the fly if the in-memory hash table * gets too big. The hash-value-to-batch computation is arranged so that this * can only cause a tuple to go into a later batch than previously thought, * never into an earlier batch. When we increase nbatch, we rescan the hash * table and dump out any tuples that are now of a later batch to the correct * inner batch file. Subsequently, while reading either inner or outer batch * files, we might find tuples that no longer belong to the current batch; * if so, we just dump them out to the correct batch file. * 如果内存中的哈希表太大,可以动态增加nbatch。 * 散列值到批处理的计算是这样安排的: * 这只会导致元组进入比以前认为的更晚的批处理,而不会进入更早的批处理。 * 当增加nbatch时,重新扫描哈希表,并将现在属于后面批处理的任何元组转储到正确的内部批处理文件。 * 随后,在读取内部或外部批处理文件时,可能会发现不再属于当前批处理的元组; * 如果是这样,只需将它们转储到正确的批处理文件即可。 * ---------------------------------------------------------------- */ /* these are in nodes/execnodes.h: */ /* typedef struct HashJoinTupleData *HashJoinTuple; */ /* typedef struct HashJoinTableData *HashJoinTable; */ typedef struct HashJoinTupleData { /* link to next tuple in same bucket */ //link同一个桶中的下一个元组 union { struct HashJoinTupleData *unshared; dsa_pointer shared; } next; uint32 hashvalue; /* 元组的hash值;tuple's hash code */ /* Tuple data, in MinimalTuple format, follows on a MAXALIGN boundary */ } HashJoinTupleData; #define HJTUPLE_OVERHEAD MAXALIGN(sizeof(HashJoinTupleData)) #define HJTUPLE_MINTUPLE(hjtup) \ ((MinimalTuple) ((char *) (hjtup) + HJTUPLE_OVERHEAD))
二、源码解读
ExecScanHashBucket
搜索匹配当前outer relation tuple的hash桶,寻找匹配的inner relation元组。
/*---------------------------------------------------------------------------------------------------- HJ_SCAN_BUCKET 阶段 ----------------------------------------------------------------------------------------------------*/ /* * ExecScanHashBucket * scan a hash bucket for matches to the current outer tuple * 搜索匹配当前outer relation tuple的hash桶 * * The current outer tuple must be stored in econtext->ecxt_outertuple. * 当前的outer relation tuple必须存储在econtext->ecxt_outertuple中 * * On success, the inner tuple is stored into hjstate->hj_CurTuple and * econtext->ecxt_innertuple, using hjstate->hj_HashTupleSlot as the slot * for the latter. * 成功后,内部元组存储到hjstate->hj_CurTuple和econtext->ecxt_innertuple中, * 使用hjstate->hj_HashTupleSlot作为后者的slot。 */ bool ExecScanHashBucket(HashJoinState *hjstate, ExprContext *econtext) { ExprState *hjclauses = hjstate->hashclauses;//hash连接条件表达式 HashJoinTable hashtable = hjstate->hj_HashTable;//Hash表 HashJoinTuple hashTuple = hjstate->hj_CurTuple;//当前的Tuple uint32 hashvalue = hjstate->hj_CurHashValue;//hash值 /* * hj_CurTuple is the address of the tuple last returned from the current * bucket, or NULL if it's time to start scanning a new bucket. * hj_CurTuple是最近从当前桶返回的元组的地址,如果需要开始扫描新桶,则为NULL。 * * If the tuple hashed to a skew bucket then scan the skew bucket * otherwise scan the standard hashtable bucket. * 如果元组散列到倾斜桶,则扫描倾斜桶,否则扫描标准哈希表桶。 */ if (hashTuple != NULL) hashTuple = hashTuple->next.unshared;//hashTuple,通过指针获取下一个 else if (hjstate->hj_CurSkewBucketNo != INVALID_SKEW_BUCKET_NO) //如为NULL,而且使用倾斜优化,则从倾斜桶中获取 hashTuple = hashtable->skewBucket[hjstate->hj_CurSkewBucketNo]->tuples; else ////如为NULL,不使用倾斜优化,从常规的bucket中获取 hashTuple = hashtable->buckets.unshared[hjstate->hj_CurBucketNo]; while (hashTuple != NULL)//循环 { if (hashTuple->hashvalue == hashvalue)//hash值一致 { TupleTableSlot *inntuple;//inner tuple /* insert hashtable's tuple into exec slot so ExecQual sees it */ //把Hash表中的tuple插入到执行器的slot中,作为函数ExecQual的输入使用 inntuple = ExecStoreMinimalTuple(HJTUPLE_MINTUPLE(hashTuple), hjstate->hj_HashTupleSlot, false); /* do not pfree */ econtext->ecxt_innertuple = inntuple;//赋值 if (ExecQualAndReset(hjclauses, econtext))//判断连接条件是否满足 { hjstate->hj_CurTuple = hashTuple;//满足,则赋值&返回T return true; } } hashTuple = hashTuple->next.unshared;//从Hash表中获取下一个tuple } /* * no match * 不匹配,返回F */ return false; } /* * Store a minimal tuple into TTSOpsMinimalTuple type slot. * 存储最小化的tuple到TTSOpsMinimalTuple类型的slot中 * * If the target slot is not guaranteed to be TTSOpsMinimalTuple type slot, * use the, more expensive, ExecForceStoreMinimalTuple(). * 如果目标slot不能确保是TTSOpsMinimalTuple类型,使用代价更高的ExecForceStoreMinimalTuple()函数 */ TupleTableSlot * ExecStoreMinimalTuple(MinimalTuple mtup, TupleTableSlot *slot, bool shouldFree) { /* * sanity checks * 安全检查 */ Assert(mtup != NULL); Assert(slot != NULL); Assert(slot->tts_tupleDescriptor != NULL); if (unlikely(!TTS_IS_MINIMALTUPLE(slot)))//类型检查 elog(ERROR, "trying to store a minimal tuple into wrong type of slot"); tts_minimal_store_tuple(slot, mtup, shouldFree);//存储 return slot;//返回slot } static void tts_minimal_store_tuple(TupleTableSlot *slot, MinimalTuple mtup, bool shouldFree) { MinimalTupleTableSlot *mslot = (MinimalTupleTableSlot *) slot;//获取slot tts_minimal_clear(slot);//清除原来的slot //安全检查 Assert(!TTS_SHOULDFREE(slot)); Assert(TTS_EMPTY(slot)); //设置slot信息 slot->tts_flags &= ~TTS_FLAG_EMPTY; slot->tts_nvalid = 0; mslot->off = 0; //存储到mslot中 mslot->mintuple = mtup; Assert(mslot->tuple == &mslot->minhdr); mslot->minhdr.t_len = mtup->t_len + MINIMAL_TUPLE_OFFSET; mslot->minhdr.t_data = (HeapTupleHeader) ((char *) mtup - MINIMAL_TUPLE_OFFSET); /* no need to set t_self or t_tableOid since we won't allow access */ //不需要设置t_sefl或者t_tableOid,因为不允许访问 if (shouldFree) slot->tts_flags |= TTS_FLAG_SHOULDFREE; else Assert(!TTS_SHOULDFREE(slot)); } /* * ExecQualAndReset() - evaluate qual with ExecQual() and reset expression * context. * ExecQualAndReset() - 使用ExecQual()解析并重置表达式 */ #ifndef FRONTEND static inline bool ExecQualAndReset(ExprState *state, ExprContext *econtext) { bool ret = ExecQual(state, econtext);//调用ExecQual /* inline ResetExprContext, to avoid ordering issue in this file */ //内联ResetExprContext,避免在这个文件中的ordering MemoryContextReset(econtext->ecxt_per_tuple_memory); return ret; } #endif #define HeapTupleHeaderSetMatch(tup) \ ( \ (tup)->t_infomask2 |= HEAP_TUPLE_HAS_MATCH \ )
三、跟踪分析
测试脚本如下
testdb=# set enable_nestloop=false; SET testdb=# set enable_mergejoin=false; SET testdb=# explain verbose select dw.*,grjf.grbh,grjf.xm,grjf.ny,grjf.je testdb-# from t_dwxx dw,lateral (select gr.grbh,gr.xm,jf.ny,jf.je testdb(# from t_grxx gr inner join t_jfxx jf testdb(# on gr.dwbh = dw.dwbh testdb(# and gr.grbh = jf.grbh) grjf testdb-# order by dw.dwbh; QUERY PLAN ----------------------------------------------------------------------------------------------- Sort (cost=14828.83..15078.46 rows=99850 width=47) Output: dw.dwmc, dw.dwbh, dw.dwdz, gr.grbh, gr.xm, jf.ny, jf.je Sort Key: dw.dwbh -> Hash Join (cost=3176.00..6537.55 rows=99850 width=47) Output: dw.dwmc, dw.dwbh, dw.dwdz, gr.grbh, gr.xm, jf.ny, jf.je Hash Cond: ((gr.grbh)::text = (jf.grbh)::text) -> Hash Join (cost=289.00..2277.61 rows=99850 width=32) Output: dw.dwmc, dw.dwbh, dw.dwdz, gr.grbh, gr.xm Inner Unique: true Hash Cond: ((gr.dwbh)::text = (dw.dwbh)::text) -> Seq Scan on public.t_grxx gr (cost=0.00..1726.00 rows=100000 width=16) Output: gr.dwbh, gr.grbh, gr.xm, gr.xb, gr.nl -> Hash (cost=164.00..164.00 rows=10000 width=20) Output: dw.dwmc, dw.dwbh, dw.dwdz -> Seq Scan on public.t_dwxx dw (cost=0.00..164.00 rows=10000 width=20) Output: dw.dwmc, dw.dwbh, dw.dwdz -> Hash (cost=1637.00..1637.00 rows=100000 width=20) Output: jf.ny, jf.je, jf.grbh -> Seq Scan on public.t_jfxx jf (cost=0.00..1637.00 rows=100000 width=20) Output: jf.ny, jf.je, jf.grbh (20 rows)
启动gdb,设置断点
(gdb) b ExecScanHashBucket Breakpoint 1 at 0x6ff25b: file nodeHash.c, line 1910. (gdb) c Continuing. Breakpoint 1, ExecScanHashBucket (hjstate=0x2bb8738, econtext=0x2bb8950) at nodeHash.c:1910 1910 ExprState *hjclauses = hjstate->hashclauses;
设置相关变量
1910 ExprState *hjclauses = hjstate->hashclauses; (gdb) n 1911 HashJoinTable hashtable = hjstate->hj_HashTable; (gdb) 1912 HashJoinTuple hashTuple = hjstate->hj_CurTuple; (gdb) 1913 uint32 hashvalue = hjstate->hj_CurHashValue; (gdb) 1922 if (hashTuple != NULL)
hash join连接条件
(gdb) p *hjclauses $1 = {tag = {type = T_ExprState}, flags = 7 '\a', resnull = false, resvalue = 0, resultslot = 0x0, steps = 0x2bc4bc8, evalfunc = 0x6d1a6e, expr = 0x2bb60c0, evalfunc_private = 0x6cf625 , steps_len = 7, steps_alloc = 16, parent = 0x2bb8738, ext_params = 0x0, innermost_caseval = 0x0, innermost_casenull = 0x0, innermost_domainval = 0x0, innermost_domainnull = 0x0}
hash表
(gdb) p hashtable $2 = (HashJoinTable) 0x2bc9de8 (gdb) p *hashtable $3 = {nbuckets = 16384, log2_nbuckets = 14, nbuckets_original = 16384, nbuckets_optimal = 16384, log2_nbuckets_optimal = 14, buckets = {unshared = 0x7f0fc1345050, shared = 0x7f0fc1345050}, keepNulls = false, skewEnabled = false, skewBucket = 0x0, skewBucketLen = 0, nSkewBuckets = 0, skewBucketNums = 0x0, nbatch = 1, curbatch = 0, nbatch_original = 1, nbatch_outstart = 1, growEnabled = true, totalTuples = 10000, partialTuples = 10000, skewTuples = 0, innerBatchFile = 0x0, outerBatchFile = 0x0, outer_hashfunctions = 0x2bdc228, inner_hashfunctions = 0x2bdc280, hashStrict = 0x2bdc2d8, spaceUsed = 677754, spaceAllowed = 16777216, spacePeak = 677754, spaceUsedSkew = 0, spaceAllowedSkew = 335544, hashCxt = 0x2bdc110, batchCxt = 0x2bde120, chunks = 0x2c708f0, current_chunk = 0x0, area = 0x0, parallel_state = 0x0, batches = 0x0, current_chunk_shared = 0}
hash桶中的元组&hash值
(gdb) p *hashTuple Cannot access memory at address 0x0 (gdb) p hashvalue $4 = 2324234220 (gdb)
从常规hash桶中获取hash元组
(gdb) n 1924 else if (hjstate->hj_CurSkewBucketNo != INVALID_SKEW_BUCKET_NO) (gdb) p hjstate->hj_CurSkewBucketNo $5 = -1 (gdb) n 1927 hashTuple = hashtable->buckets.unshared[hjstate->hj_CurBucketNo]; (gdb) 1929 while (hashTuple != NULL) (gdb) p hjstate->hj_CurBucketNo $7 = 16364 (gdb) p *hashTuple $6 = {next = {unshared = 0x0, shared = 0}, hashvalue = 1822113772}
判断hash值是否一致
(gdb) n 1931 if (hashTuple->hashvalue == hashvalue) (gdb) p hashTuple->hashvalue $8 = 1822113772 (gdb) p hashvalue $9 = 2324234220 (gdb)
不一致,继续下一个元组
(gdb) n 1948 hashTuple = hashTuple->next.unshared; (gdb) 1929 while (hashTuple != NULL)
下一个元组为NULL,返回F,说明没有匹配的元组
(gdb) p *hashTuple Cannot access memory at address 0x0 (gdb) n 1954 return false;
在ExecStoreMinimalTuple上设置断点(这时候Hash值是一致的)
(gdb) b ExecStoreMinimalTuple Breakpoint 2 at 0x6e8cbf: file execTuples.c, line 427. (gdb) c Continuing. Breakpoint 1, ExecScanHashBucket (hjstate=0x2bb8738, econtext=0x2bb8950) at nodeHash.c:1910 1910 ExprState *hjclauses = hjstate->hashclauses; (gdb) del 1 (gdb) c Continuing. Breakpoint 2, ExecStoreMinimalTuple (mtup=0x2be81b0, slot=0x2bb9c18, shouldFree=false) at execTuples.c:427 427 Assert(mtup != NULL); (gdb) finish Run till exit from #0 ExecStoreMinimalTuple (mtup=0x2be81b0, slot=0x2bb9c18, shouldFree=false) at execTuples.c:427 0x00000000006ff335 in ExecScanHashBucket (hjstate=0x2bb8738, econtext=0x2bb8950) at nodeHash.c:1936 1936 inntuple = ExecStoreMinimalTuple(HJTUPLE_MINTUPLE(hashTuple), Value returned is $10 = (TupleTableSlot *) 0x2bb9c18 (gdb) n 1939 econtext->ecxt_innertuple = inntuple;
匹配成功,返回T
(gdb) n 1941 if (ExecQualAndReset(hjclauses, econtext)) (gdb) 1943 hjstate->hj_CurTuple = hashTuple; (gdb) 1944 return true; (gdb) 1955 } (gdb)
HJ_SCAN_BUCKET阶段,实现的逻辑是扫描Hash桶,寻找inner relation中与outer relation元组匹配的元组,如匹配,则把匹配的Tuple存储在hjstate->hj_CurTuple中.
“PostgreSQL的ExecHashJoin依赖其他函数的实现逻辑是什么”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注创新互联网站,小编将为大家输出更多高质量的实用文章!
网站栏目:PostgreSQL的ExecHashJoin依赖其他函数的实现逻辑是什么
浏览地址:http://scyanting.com/article/iioeip.html