Spark3.0如何提高SQL工作负载的性能

Spark 3.0如何提高SQL工作负载的性能,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。

创新互联建站是一家专业从事成都网站制作、成都做网站的网络公司。作为专业网站设计公司,创新互联建站依托的技术实力、以及多年的网站运营经验,为您提供专业的成都网站建设、成都营销网站建设及网站设计开发服务!

AQE最初是在Spark 2.4中引入的,但随着Spark 3.0的发展,它变得更加强大。尽管Cloudera建议在我们交付Spark 3.1之前等待在生产中使用它,但您现在可以使用AQE开始在Spark 3.0中进行评估。 

首先,让我们看一下AQE解决的问题类型。

初始催化剂设计中的缺陷

下图表示使用DataFrames执行简单的按组分组查询时发生的分布式处理的类型。

Spark 3.0如何提高SQL工作负载的性能

Spark为第一阶段确定适当的分区数量,但对于第二阶段,使用默认的幻数200。

不好的原因有三个:

  1. 200不可能是理想的分区数,而分区数是影响性能的关键因素之一;

  2. 如果将第二阶段的输出写入磁盘,则可能会得到200个小文件。

  3. 优化及其缺失会产生连锁反应:如果在第二阶段之后继续进行处理,您可能会错过进行更多优化的潜在机会。

您可以做的是在执行类似于以下语句的查询之前,手动为此shuffle设置此属性的值:

spark.conf.set(“ spark.sql.shuffle.partitions”,“ 2”)

这也带来了一些挑战:

  • 在每次查询之前都要设置此属性

  • 这些值将随着数据的发展而过时

  • 此设置将应用于查询中的所有Shuffle操作

在上一个示例的第一阶段之前,数据的分布和数量是已知的,Spark可以得出合理的分区数量值。但是,对于第二阶段,此信息尚不知道要获得执行第一阶段的实际处理所要付出的代价:因此,求助于幻数。 


自适应查询执行设计原理

AQE的主要思想是使执行计划不是最终的,并允许在每个阶段的边界进行审核。因此,执行计划被分解为由阶段界定的新的“查询阶段”抽象。

催化剂现在停在每个阶段的边界,以根据中间数据上可用的信息尝试并应用其他优化。

因此,可以将AQE定义为Spark Catalyst之上的一层,它将动态修改Spark计划。

有什么缺点吗?有一些,但它们很小:

  • 执行在Spark的每个阶段边界处停止,以查看其计划,但这被性能提升所抵消。

  • Spark UI更加难以阅读,因为Spark为给定的应用程序创建了更多的作业,而这些作业不会占用您设置的Job组和描述。

Spark 3.0如何提高SQL工作负载的性能

Shuffle分区的自适应数目

自Spark 2.4起,AQE的此功能已可用。

要启用它,您需要将spark.sql.adaptive.enabled设置为true ,该参数默认值为false 。启用AQE后,随机调整分区的数量将自动调整,不再是默认的200或手动设置的值。

这是启用AQE之前和之后第一个TPC-DS查询的执行结果:

Spark 3.0如何提高SQL工作负载的性能


动态将排序合并联接转换为广播联接

当任何联接端的运行时统计信息小于广播哈希联接阈值时,AQE会将排序合并联接转换为广播哈希联接。

这是启用AQE之前和之后第二个TPC-DS查询执行的最后阶段:

Spark 3.0如何提高SQL工作负载的性能


动态合并shuffle分区

如果随机播放分区的数量大于按键分组的数量,则由于键的不平衡分配,会浪费很多CPU周期

当两个 

spark.sql.adaptive.enabledspark.sql.adaptive.coalescePartitions.enabled

设置为true ,Spark将根据以下内容合并连续的shuffle分区

设置为spark.sql.adaptive.advisoryPartitionSizeInBytes指定的目标大小,以避免执行过多的小任务。

Spark 3.0如何提高SQL工作负载的性能


动态优化倾斜的连接

倾斜是分布式处理的绊脚石。它实际上可能会使您的处理暂停数小时:

Spark 3.0如何提高SQL工作负载的性能

如果不进行优化,则执行连接所需的时间将由最大的分区来定义。

Spark 3.0如何提高SQL工作负载的性能

因此,倾斜联接优化将使用spark.sql.adaptive.advisoryPartitionSizeInBytes指定的值将分区A0划分为子分区,并将它们中的每一个联接到表B的对应分区B0。

Spark 3.0如何提高SQL工作负载的性能

因此,您需要向AQE提供您的倾斜定义。

这涉及两个属性:

  1. spark.sql.adaptive.skewJoin.skewedPartitionFactor是相对的:如果分区的大小大于此因子乘以中位数分区大小且也大于,则认为该分区是倾斜的

  2. spark.sql.adaptive.skewedPartitionThresholdInBytes ,这是绝对的:这是阈值,低于该阈值将被忽略。


动态分区修剪

动态分区修剪(DPP)的想法是最有效的优化技术之一:仅读取所需的数据。DPP不是AQE的一部分,实际上,必须禁用AQE才能进行DPP。从好的方面来说,这允许将DPP反向移植到Spark 2.4 for CDP。

该优化在逻辑计划和物理计划上均实现。

  1. 在逻辑级别上,识别维度过滤器,并通过连接传播到扫描的另一侧。

  2. 然后,在物理级别上,过滤器在维度侧执行一次,结果被广播到主表,在该表中也应用了过滤器。

Spark 3.0如何提高SQL工作负载的性能

如果禁用spark.sql.optimizer.dynamicPartitionPruning.reuseBroadcastOnly,则DPP实际上可以与其他类型的联接一起使用(例如,SortMergeJoin)。 

在那种情况下,Spark会估计DPP过滤器是否真正提高了查询性能。

DPP可以极大地提高高度选择性查询的性能,例如,如果您的查询从5年的数据中的一个月中筛选出来。

Spark 3.0如何提高SQL工作负载的性能

并非所有查询的性能都有如此显着的提高,但是在99个TPC-DS查询中,有72个受到DPP的积极影响。


Spark距其最初的核心范例还有很长的路要走:在静态数据集上懒惰地执行优化的静态计划。

静态数据集部分受到流技术的挑战:Spark团队首先创建了一个基于RDD的笨拙设计,然后提出了一个涉及DataFrames的更好的解决方案。

静态计划部分受到SQL和Adaptive Query Execution框架的挑战,从某种意义上说,结构化流对于初始流库是什么:它应该一直是一个优雅的解决方案。

看完上述内容是否对您有帮助呢?如果还想对相关知识有进一步的了解或阅读更多相关文章,请关注创新互联行业资讯频道,感谢您对创新互联的支持。


文章名称:Spark3.0如何提高SQL工作负载的性能
地址分享:http://scyanting.com/article/jddisd.html